Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased expression of Profilin potentiates chemotherapeutic agent-mediated tumour regression

Abstract

Background

Targeted cancer therapy is an alternative to standard chemotherapy for a better prognosis. Although its incompetency for triple-negative breast cancer (TNBC), treatment still relies on classical chemotherapy. Increasing evidence suggest that chemotherapeutic drug-induced toxic effect could be minimised by combinatorial therapy. Profilin’s familiar anti-tumorigenic activity can be utilised in combination with the drug to improve efficacy, which could be promising therapeutics to treat TNBC.

Methods

All-trans retinoic acid (ATRA) in combination with vinblastine was tested on human MDA MB-231 cell line (MB-231) (in vitro) and MB-231 borne breast cancer in nude mice (in vivo). Effects of combination treatment on tumour growth inhibition and apoptosis were examined by tumour volume, histology and PARP cleavage. ATRA-induced transcriptional regulation of profilin had been evaluated by gel-shift and reporter gene assays. Profilin’s role in ATRA-induced vinblastine efficacy was validated in profilin-stable and profilin-silenced cells.

Results

ATRA binds with RAR/RXR to increase the profilin expression that potentiated cell death by chemotherapeutics. ATRA priming led to vinblastine-mediated potentiation of G2–M phase cell cycle arrest in MB-231 cells and regression of breast cancer in xenograft mice at very low concentration without any adverse effects. Moreover, increased p53 and PTEN but downregulated p65 in the tumour tissues further supported the involvement of profilin for tumour regression.

Conclusions

Vinblastine at very low concentration (20 times lesser than the recommended dose for breast cancer therapeutic) significantly regress tumour growth in ATRA-primed mice without any toxic effects suggesting potential combinatorial therapeutics for TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Profilin increases chemotherapeutic agents-mediated cell death.
Fig. 2: ATRA potentiates chemotherapeutic drugs-mediated cell death through profilin upregulation.
Fig. 3: ATRA-induced profilin potentiates vinblastine-mediated G2–M arrest.
Fig. 4: ATRA induces profilin expression through RAR/RXR transcription factors binding on RARE sequence.
Fig. 5: Combinatorial treatment of ATRA and vinblastine reduces the growth of tumour xenograft in nude mice without any side effects.
Fig. 6: Combinatorial treatment of ATRA and vinblastine increases profilin, p53, PTEN and reduces p65 in tumour.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U. Actin polymerizability is influenced by Profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977;115:465–483.

    Article  CAS  PubMed  Google Scholar 

  2. Ding Z, Gau D, Deasy B, Wells A, Roy P. Both actin and polyproline interactions of Profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp Cell Res. 2009;315:2963–2973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–465.

    Article  CAS  PubMed  Google Scholar 

  4. Ding Z, Lambrechts A, Parepally M, Roy P. Silencing Profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci. 2006;119:4127–4137.

    Article  CAS  PubMed  Google Scholar 

  5. Zaidi AH, Manna SK. Profilin–PTEN interaction suppresses NF-κB activation via inhibition of IKK phosphorylation. Biochem J. 2016;473:859–872.

    Article  CAS  PubMed  Google Scholar 

  6. Ding Z, Joy M, Bhargava R, Gunsaulus M, Lakshman N, Miron-Mendoza M, et al. Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene. 2014;33:2065–2074.

    Article  CAS  PubMed  Google Scholar 

  7. Choi YN, Lee SK, Seo TW, Lee JS, Yoo SJ. C-Terminus of Hsc70-interacting protein regulates Profilin1 and breast cancer cell migration. Biochem Biophys Res Commun. 2014;446:1060–1066.

    Article  CAS  PubMed  Google Scholar 

  8. Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ. Profilin I is essential for cell survival and cell division in early mouse development. PNAS. 2001;98:3832–3836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Witke W. The role of Profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 2004;14:461–69.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang C, Ding Z, Joy M, Chakraborty S, Kim SH, Bottcher R, et al. A balanced level of profilin-1 promotes stemness and tumor-initiating potential of breast cancer cells. Cell Cycle. 2017;16:2366–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wendell KL, Wilson L, Jordan MA. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-mcirotubule attachment and in centrosomes. J Cell Sci. 1993;104:261–274.

    Article  CAS  PubMed  Google Scholar 

  12. Chemocare. Vinblastine. 2021. http://chemocare.com/chemotherapy/drug-info/Vinblastine.aspx.

  13. Schinzari G, Rossi E, Cassano A, Dadduzio V, Quirino M, Pagliara M, et al. Cisplatin, dacarbazine and vinblastine as first line chemotherapy for liver metastatic uveal melanoma in the era of immunotherapy: a single institution phase II study. Melanoma Res. 2017;17 27:591–595.

    Article  CAS  Google Scholar 

  14. Ahmed T, Yagoda A, Needles B, Scher HI, Watson RC, Geller N. Vinblastine and methotrexate for advanced bladder cancer. J Urol. 1985;133:602–604.

    Article  CAS  PubMed  Google Scholar 

  15. Garewal HS, Brooks RJ, Jones SE, Miller TP. Treatment of advanced breast cancer with mitomycin C combined with vinblastine or vindesine. J Clin Oncol. 1983;12:772–775.

    Article  Google Scholar 

  16. Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene therapy in cancer treatment: why go nano? Pharmaceutics. 2020;12:233.

    Article  CAS  PubMed Central  Google Scholar 

  17. Wu N, Zhang W, Yang Y, Liang Y, Wang L, Jin J, et al. Profilin 1 obtained by proteomic analysis in a 11-trans retinoic acid-treated hepatocarcinoma cell lines is involved in inhibition of cell proliferation and migration. Proteomics. 2006;6:6095–6106.

    Article  CAS  PubMed  Google Scholar 

  18. Zaidi AH, Raviprakash N, Mokhamatam RB, Gupta P, Manna SK. Profilin potentiates chemotherapeutic agents mediated cell death via suppression of NF-κB and upregulation of p53. Apoptosis. 2016;21:502–513.

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Zhong Q, Yang T, Xie X, Chen M. The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs). Cardiovasc Diabetol. 2013;12:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Matijević T, Pavelić J. Poly(I:C) treatment influences the expression of calreticulin and profilin-1 in a human HNSCC cell line: a proteomic study. Tumour Biol. 2012;33:1201–1208.

    Article  PubMed  CAS  Google Scholar 

  21. Luo T, Sakai Y, Wagner E, Drager UC. Retinoids, eye development, and maturation of visual function. J Neurobiol. 2006;66:677–686.

    Article  CAS  PubMed  Google Scholar 

  22. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002;43:1773–1808.

    Article  CAS  PubMed  Google Scholar 

  23. Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66:606–630.

    Article  CAS  PubMed  Google Scholar 

  24. Long Q, Zhou M, Liu X, Du Y, Fan J, Li X, et al. Interaction of CCN1 with αvβ3 integrin induces P-glycoprotein and confers vinblastine resistance in renal cell carcinoma cells. Anti Cancer Drugs. 2013;24:810–817.

    Article  CAS  PubMed  Google Scholar 

  25. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Erratum: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2006;116:2827.

    Article  CAS  PubMed Central  Google Scholar 

  26. Yap HY, Blumenschein GR, Keating MJ, Hortobagyi GN, Tashima CK, Loo TL. Vinblastine given as a continuous 5-day infusion in the treatment of refractory advanced breast cancer. Cancer Treat Rep. 1980;64:279–283.

    CAS  PubMed  Google Scholar 

  27. Kaushik A, Kelsoe G, Jaton JC. The nude mutation results in impaired primary antibody repertoire. Eur J Immunol. 1995;25:631–634.

    Article  CAS  PubMed  Google Scholar 

  28. Price JE. Metastasis from human breast cancer cell lines. Breast cancer Res Treat. 1996;39:93–102.

    Article  CAS  PubMed  Google Scholar 

  29. Raviprakash N, Manna SK. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors. Br J Pharmacol. 2014;171:3339–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.

    Article  CAS  PubMed  Google Scholar 

  31. Mohun AF, Cook IJY. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic- pyruvic transaminases in routine laboratories. J Clin Pathol. 1957;10:394–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patrad E, Niapour A, Farassati F, Amani M. Combination treatment of all-trans retinoic acid (ATRA) and γ-secretase inhibitor (DAPT) cause growth inhibition and apoptosis induction in the human gastric cancer cell line. Cytotechnology. 2018;70:865–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schenk T, Stengel S, Zelent A. Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer. 2014;111:2039–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gene Transcription Regulation Database. V20.06, as on 1st June 2019. http://gtrd.biouml.org/.

  35. Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S. Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000;19:1045–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Price JE, Polyzos A, Zhang RD, Daniels LM. Tumorigenicity and metastasis of human breast carcinoma cell Lines in nude mice. Cancer Res. 1990;50:717–721.

    CAS  PubMed  Google Scholar 

  37. Liu Y, Chou C, Kim M, Vasisht R, Kuo Y, Ang P, et al. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep. 2019;9:3395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Janke J, Schlüter K, Jandrig B, Theile M, Kölble K, Arnold W, et al. Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med. 2000;191:1675–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frantzi M, Klimou Z, Makridakis M, Zoidakis J, Latosinska A, Borràs DM, et al. Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models. Oncotarget. 2016;7:70750–70768.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shen K, Xi Z, Xie J, Wang H, Xie C, Lee CS, et al. Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1. Oncotarget. 2016;7:56650–56663.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei J, Ye C, Liu F, Wang W. All-trans retinoic acid and arsenic trioxide induce apoptosis and modulate intracellular concentrations of calcium in hepatocellular carcinoma cells. J Chemother. 2014;26:348–352.

    Article  CAS  PubMed  Google Scholar 

  42. Arce F, Gätjens-Boniche O, Vargas E, Valverde B, Díaz C. Apoptotic events induced by naturally occurring retinoids ATRA and 13-cis retinoic acid on human hepatoma cell lines Hep3B and HepG2. Cancer Lett. 2005;229:271–281.

    Article  CAS  PubMed  Google Scholar 

  43. Aebi S, Kröning R, Cenni B, Sharma A, Fink D, Los G, et al. all-trans retinoic acid enhances cisplatin-induced apoptosis in human ovarian adenocarcinoma and in squamous head and neck cancer cells. Clin Cancer Res. 1997;11:2033–2038.

    Google Scholar 

  44. Orfali N, O’Donovan TR, Cahill MR, Benjamin D, Nanus DM, McKenna SL, et al. All-trans retinoic acid (ATRA)-induced TFEB expression is required for myeloid differentiation in acute promyelocytic leukemia (APL). Eur J Haematol. 2020;104:236–250.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang C, Veon W, Li H, Hallows KR, Roy P. Epithelial morphological reversion drives Profilin-1-induced elevation of p27kip1 in mesenchymal triple-negative human breast cancer cells through AMP-activated protein kinase activation. Cell Cycle. 2015;14:2914–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu C, Kim SJ, Mooradian A, Wang F, Li Z, Holohan S, et al. Cancer-associated exportin-6 upregulation inhibits the transcriptionally repressive and anticancer effects of nuclear profilin-1. Cell Rep. 2021;34:108749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mills KI, Walsh V, Gilkes AF, Woodgate LJ, Brown G, Burnett AK. Identification of transcription factors expressed during ATRA-induced neutrophil differentiation of HL60 cells. Br J Haematol. 1998;103:87–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CDFDs’ Animal House Facility and Sophisticated Equipment Facility (SEF) for their support in this study.

Funding

This work was partially supported by the core grant of Centre for DNA Fingerprinting and Diagnostics (CDFD). We thank Department of Biotechnology (DBT), Govt. of India for providing fellowship to SS and the fund from DBT-NER grant.

Author information

Authors and Affiliations

Authors

Contributions

SS performed all the experiments, data curation, investigation, analysis, manuscript writing and SKM conceptualised the project, supervised and wrote the manuscript.

Corresponding author

Correspondence to Sunil Kumar Manna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurav, S., Manna, S.K. Increased expression of Profilin potentiates chemotherapeutic agent-mediated tumour regression. Br J Cancer 126, 1410–1420 (2022). https://doi.org/10.1038/s41416-021-01683-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-021-01683-5

Search

Quick links