Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Development of the semi-dry dot-blot method for intraoperative detecting micropapillary component in lung adenocarcinoma based on proteomics analysis

Abstract

Background

Micropapillary (MIP) component was a major concern in determining surgical strategy in lung adenocarcinoma (LUAD). We sought to develop a novel method for detecting MIP component during surgery.

Methods

Differentially expressed proteins between MIP-positive and MIP-negative LUAD were identified through proteomics analysis. The semi-dry dot-blot (SDB) method which visualises the targeted protein was developed to detect MIP component.

Results

Cellular retinoic acid-binding protein 2 (CRABP2) was significantly upregulated in MIP-positive LUAD (P < 0.001), and the high CRABP2 expression zone showed spatial consistency with MIP component. CRABP2 expression was also associated with decreased recurrence-free survival (P < 0.001). In the prospective cohort, the accuracy and sensitivity of detecting MIP component using SDB method by visualising CRABP2 were 82.2% and 72.7%, which were comparable to these of pathologist. Pathologist with the aid of SDB method would improve greatly in diagnostic accuracy (86.4%) and sensitivity (78.2%). In patients with minor MIP component (≤5%), the sensitivity of SDB method (63.6%) was significantly higher than pathologist (45.4%).

Conclusions

Intraoperative examination of CRABP2 using SDB method to detect MIP component reached comparable performance to pathologist, and SDB method had notable superiority than pathologist in detecting minor MIP component.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The flow diagram of SDB method for detecting micropapillary.
Fig. 2: Identification and validation of targeted proteins for SDB method.
Fig. 3: Validation of SDB method for detecting MIP component through colorimetric comparison.
Fig. 4: Performance of SDB method for detecting MIP component and compare it with pathologist.

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhu E, Dai C, Xie H, Su H, Hu X, Li M, et al. Lepidic component identifies a subgroup of lung adenocarcinoma with a distinctive prognosis: a multicenter propensity-matched analysis. Ther Adv Med Oncol. 2020;12:1758835920982845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang T, Deng J, She Y, Zhang L, Wang B, Ren Y, et al. Radiomics signature predicts the recurrence-free survival in stage I non-small cell lung cancer. Ann Thorac Surg. 2020;109:1741–9.

    Article  PubMed  Google Scholar 

  3. She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw open. 2020;3:e205842.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yanagawa N, Shiono S, Abiko M, Ogata SY, Sato T, Tamura G. New IASLC/ATS/ERS classification and invasive tumor size are predictive of disease recurrence in stage I lung adenocarcinoma. J Thorac Oncol. 2013;8:612–8.

    Article  PubMed  Google Scholar 

  6. Travis WD, Brambilla E, Van Schil P, Scagliotti GV, Huber RM, Sculier JP, et al. Paradigm shifts in lung cancer as defined in the new IASLC/ATS/ERS lung adenocarcinoma classification. Eur Respir J. 2011;38:239–43.

    Article  CAS  PubMed  Google Scholar 

  7. Warth A, Muley T, Meister M, Stenzinger A, Thomas M, Schirmacher P, et al. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol. 2012;30:1438–46. 7

    Article  PubMed  Google Scholar 

  8. Chen D, Ding Q, Wang W, Wang X, Wu X, Mao Y, et al. Characterization of extracapsular lymph node involvement and its clinicopathological characteristics in stage II-IIIA lung adenocarcinoma. Ann Surg Oncol. 2021;28:2088–98.

    Article  PubMed  Google Scholar 

  9. Yao J, Zhu E, Li M, Liu J, Zhang L, Ke H, et al. Prognostic impact of micropapillary component in patients with node-negative subcentimeter lung adenocarcinoma: a Chinese cohort study. Thorac Cancer. 2020;11:3566–75.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pani E, Kennedy G, Zheng X, Ukert B, Jarrar D, Gaughan C, et al. Factors associated with nodal metastasis in 2-centimeter or less non-small cell lung cancer. J Thorac Cardiovasc Surg. 2020;159:1088–96.

    Article  PubMed  Google Scholar 

  11. Yuan Y, Ma G, Zhang Y, Chen H. Presence of micropapillary and solid patterns are associated with nodal upstaging and unfavorable prognosis among patient with cT1N0M0 lung adenocarcinoma: a large-scale analysis. J Cancer Res Clin Oncol. 2018;144:743–9.

    Article  PubMed  Google Scholar 

  12. Dai C, Xie H, Kadeer X, Su H, Xie D, Ren Y, et al. Relationship of lymph node micrometastasis and micropapillary component and their joint influence on prognosis of patients with stage I lung adenocarcinoma. Am J Surg Pathol. 2017;41:1212–20.

    Article  PubMed  Google Scholar 

  13. Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, et al. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2 cm or smaller. J Natl Cancer Inst. 2013;105:1212–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Su H, Xie H, Dai C, Zhao S, Xie D, She Y, et al. Procedure-specific prognostic impact of micropapillary subtype may guide resection strategy in small-sized lung adenocarcinomas: a multicenter study. Ther Adv Med Oncol. 2020;12:1758835920937893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun W, Su H, Liu J, Zhang L, Li M, Xie H, et al. Impact of histological components on selecting limited lymphadenectomy for lung adenocarcinoma ≤2 cm. Lung Cancer. 2020;150:36–43.

    Article  PubMed  Google Scholar 

  16. Xu Y, Ji W, Hou L, Lin S, Shi Y, Zhou C, et al. Enhanced CT-based radiomics to predict micropapillary pattern within lung invasive adenocarcinoma. Front Oncol. 2021;11:704994.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang KY, Ko PZ, Yao CW, Hsu CN, Fang HY, Tu CY, et al. Inaccuracy of lung adenocarcinoma subtyping using preoperative biopsy specimens. J Thorac Cardiovasc Surg. 2017;154:332–9.

    Article  PubMed  Google Scholar 

  18. Yeh YC, Nitadori J, Kadota K, Yoshizawa A, Rekhtman N, Moreira AL, et al. Using frozen section to identify histological patterns in stage I lung adenocarcinoma of < /=3 cm: accuracy and interobserver agreement. Histopathology. 2015;66:922–38.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trejo Bittar HE, Incharoen P, Althouse AD, Dacic S. Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections. Mod Pathol. 2015;28:1058–63.

    Article  PubMed  Google Scholar 

  20. Moreira AL, Ocampo PSS, Xia Y, Zhong H, Russell PA, Minami Y, et al. A grading system for invasive pulmonary adenocarcinoma: a proposal from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15:1599–610.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Feng X, Zhang M, Wang B, Zhou C, Mu Y, Li J, et al. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. J Exp Clin cancer Res. 2019;38:361.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Wang R, Shen X, Pan Y, Cheng C, Li Y, et al. Minor components of micropapillary and solid subtypes in lung adenocarcinoma are predictors of lymph node metastasis and poor prognosis. Ann Surg Oncol. 2016;23:2099–105.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995;60:615–22.

    Article  CAS  PubMed  Google Scholar 

  24. Kang HR, Cho JY, Lee SH, Lee YJ, Park JS, Cho YJ, et al. Role of low-dose computerized tomography in lung cancer screening among never-smokers. J Thorac Oncol. 2019;14:436–44.

    Article  PubMed  Google Scholar 

  25. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed  Google Scholar 

  26. Wisnivesky JP, Henschke CI, Swanson S, Yankelevitz DF, Zulueta J, Marcus S, et al. Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg. 2010;251:550–4.

    Article  PubMed  Google Scholar 

  27. Veluswamy RR, Ezer N, Mhango G, Goodman E, Bonomi M, Neugut AI, et al. Limited resection versus lobectomy for older patients with early-stage lung cancer: impact of histology. J Clin Oncol. 2015;33:3447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiang XH, Lu TP, Hsieh MS, Tsai TM, Liao HC, Kao TN, et al. Thoracoscopic wedge resection versus segmentectomy for cT1N0 lung adenocarcinoma. Ann Surg Oncol. 2021;28:8398–411.

    Article  PubMed  Google Scholar 

  29. Tsutani Y, Miyata Y, Nakayama H, Okumura S, Adachi S, Yoshimura M, et al. Appropriate sublobar resection choice for ground glass opacity-dominant clinical stage IA lung adenocarcinoma: wedge resection or segmentectomy. Chest. 2014;145:66–71.

    Article  PubMed  Google Scholar 

  30. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022;399:1607–17.

    Article  CAS  PubMed  Google Scholar 

  31. Altorki NK, Wang X, Wigle D, Gu L, Darling G, Ashrafi AS, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503). Lancet Respir Med. 2018;6:915–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Caso R, Sanchez-Vega F, Tan KS, Mastrogiacomo B, Zhou J, Jones GD, et al. The underlying tumor genomics of predominant histologic subtypes in lung adenocarcinoma. J Thorac Oncol. 2020;15:1844–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song SH, Park H, Lee G, Lee HY, Sohn I, Kim HS, et al. Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. J Thorac Oncol. 2017;12:624–32.

    Article  PubMed  Google Scholar 

  34. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007;129:723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie T, Tan M, Gao Y, Yang H. CRABP2 accelerates epithelial mesenchymal transition in serous ovarian cancer cells by promoting TRIM16 methylation via upregulating EZH2 expression. Environ Toxicol. 2022;37:1957–67.

    Article  CAS  PubMed  Google Scholar 

  36. Calmon MF, Rodrigues RV, Kaneto CM, Moura RP, Silva SD, Mota LD, et al. Epigenetic silencing of CRABP2 and MX1 in head and neck tumors. Neoplasia. 2009;11:1329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han SS, Kim WJ, Hong Y, Hong SH, Lee SJ, Ryu DR, et al. RNA sequencing identifies novel markers of non-small cell lung cancer. Lung Cancer. 2014;84:229–35.

    Article  PubMed  Google Scholar 

  38. Hirakawa H, Shibata K, Ohzono E. Use of a semi-dry dot-blot for rapid detection of lymph node metastasis. Clin Chim Acta. 2010;411:1149–50.

    Article  CAS  PubMed  Google Scholar 

  39. Hamada K, Otsubo R, Takeshita H, Nonaka T, Tominaga T, Hidaka S, et al. Diagnosis of lymph node metastasis in colorectal cancer by a semi-dry dot-blot method. Anticancer Res. 2019;39:2069–76.

    Article  CAS  PubMed  Google Scholar 

  40. Otsubo R, Hirakawa H, Oikawa M, Baba M, Inamasu E, Shibata K, et al. Validation of a novel diagnostic kit using the semidry dot-blot method to detect metastatic lymph nodes in breast cancer: distinguishing macrometastases from nonmacrometastases. Clin Breast Cancer. 2018;18:e345–e351.

    Article  PubMed  Google Scholar 

  41. Tomoshige K, Tsuchiya T, Otsubo R, Oikawa M, Yamasaki N, Matsumoto K, et al. Intraoperative diagnosis of lymph node metastasis in non-small-cell lung cancer by a semi-dry dot-blot method. Eur J Cardiothorac Surg. 2016;49:617–22.

    Article  PubMed  Google Scholar 

  42. Otsubo R, Oikawa M, Hirakawa H, Shibata K, Abe K, Hayashi T, et al. Novel diagnostic procedure for determining metastasis to sentinel lymph nodes in breast cancer using a semi-dry dot-blot method. Int J Cancer. 2014;134:905–12.

    Article  CAS  PubMed  Google Scholar 

  43. Fahrmann JF, Marsh T, Irajizad E, Patel N, Murage E, Vykoukal J, et al. Blood-based biomarker panel for personalized lung cancer risk assessment. J Clin Oncol. 2022;40:876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bigbee WL, Gopalakrishnan V, Weissfeld JL, Wilson DO, Dacic S, Lokshin AE, et al. A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from high-risk individuals found to be cancer-free by CT screening. J Thorac Oncol. 2012;7:698–708.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ostrin EJ, Bantis LE, Wilson DO, Patel N, Wang R, Kundnani D, et al. Contribution of a blood-based protein biomarker panel to the classification of indeterminate pulmonary nodules. J Thorac Oncol. 2021;16:228–36.

    Article  CAS  PubMed  Google Scholar 

  46. Guida F, Sun N, Bantis LE, Muller DC, Li P, Taguchi A, et al. Assessment of lung cancer risk on the basis of a biomarker panel of circulating proteins. JAMA Oncol. 2018;4:e182078.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim DJ, Kim WJ, Lim M, Hong Y, Lee SJ, Hong SH, et al. Plasma CRABP2 as a novel biomarker in patients with non-small cell lung cancer. J Korean Med Sci. 2018;33:e178.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Key Research and Development Program of China (grant no. 2022YFC2407401), the Shanghai Hospital Development Center (SHDC2020CR1021B and SHDC22021217), Shanghai Municipal Health Commission (202040322 and 20194Y0129), Shanghai Science and Technology Commission (20XD1403000 and 21S31905200).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conception and design: LX, HS, SZ, DZ and CC; Administrative support: CW, DZ and CC; Provision of study materials or patients: CW, DZ and CC; Collection and assembly of data: HS, HX, YR, JG, FW, XX and CD. Data analysis and interpretation: LX, HS and SZ. Manuscript writing: All authors; Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Deping Zhao or Chang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The institutional review board of Shanghai Pulmonary Hospital affiliated to Tongji University approved this study (IRB NO: L21-340).

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Su, H., Zhao, S. et al. Development of the semi-dry dot-blot method for intraoperative detecting micropapillary component in lung adenocarcinoma based on proteomics analysis. Br J Cancer 128, 2116–2125 (2023). https://doi.org/10.1038/s41416-023-02241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-023-02241-x

Search

Quick links