Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Losartan rewires the tumor-immune microenvironment and suppresses IGF-1 to overcome resistance to chemo-immunotherapy in ovarian cancer

Abstract

Background

Ovarian cancer (OvCa) is the most lethal of the gynecologic malignancies. Immune checkpoint inhibitors, which have revolutionized the treatment of multiple malignancies, have had limited efficacy in OvCa patients. This lack of effectiveness is partly due to the abnormal ovarian tumor microenvironment (TME), displaying a desmoplastic, highly fibrotic extracellular matrix. High extracellular matrix deposition leads to a buildup of compressive forces that cause tumor blood vessel collapse, reduced vessel perfusion, poor delivery of drugs, and compromised trafficking of cytotoxic T-cells to these tumors.

Methods

Using two syngeneic OvCa models, we tested the effect of losartan, a widely prescribed anti-hypertensive drug, on reprogramming the TME and chemosensitizing the cancer cells.

Results

Losartan treatment (i) reprograms the TME leading to increased vascular perfusion, and thus enhances drug delivery and immune effector cell intratumoral infiltration and function; and (ii) rewires the OvCa cells by suppressing the IGF-1 signaling, resulting in enhanced chemosensitivity. As a result of the combined tumor and stromal effects, losartan treatment enhances the efficacy of chemo-immunotherapy in OvCa models.

Conclusion

The safety and low cost ( < $1-2/day) of losartan warrant rapid translation of our findings to patients with OvCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Losartan treatment reprograms the TME from immunosuppressive to immunostimulatory in OvCa models.
Fig. 2: Combined losartan treatment improves chemo-immunotherapy efficacy in OvCa models.
Fig. 3: Losartan treatment enhances αPD1 efficacy, via increasing intratumoral drug delivery and immune effector cell infiltration in mouse OvCa models.
Fig. 4: Losartan treatment suppresses IGF signaling in the OvCa model.
Fig. 5: Losartan treatment, via suppressing the IGF-1 signaling, enhances chemo-immunotherapy.
Fig. 6: Losartan treatment is associated with reduced matrix level, fibrogenic signaling, and increased immune cell infiltration in OvCa patients.

Similar content being viewed by others

Data availability

The data generated in this study are available upon request from the corresponding author.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Richardson DL, Eskander RN, O’Malley DM. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance: a narrative review. JAMA Oncol. 2023;9:851–9.

    Article  PubMed  Google Scholar 

  3. Gaillard SL, Secord AA, Monk B. The role of immune checkpoint inhibition in the treatment of ovarian cancer. Gynecol Oncol Res Pract. 2016;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castellano T, Moore KN, Holman LL. An overview of immune checkpoint inhibitors in gynecologic cancers. Clin Ther. 2018;40:372–88.

    Article  PubMed  CAS  Google Scholar 

  5. Bak SP, Alonso A, Turk MJ, Berwin B. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol. 2008;46:258–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  PubMed  CAS  Google Scholar 

  7. Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res. 2005;11:8326–31.

    Article  PubMed  CAS  Google Scholar 

  8. Samrao D, Wang D, Ough F, Lin YG, Liu S, Menesses T, et al. Histologic parameters predictive of disease outcome in women with advanced stage ovarian carcinoma treated with neoadjuvant chemotherapy. Transl Oncol. 2012;5:469–74.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maniati E, Berlato C, Gopinathan G, Heath O, Kotantaki P, Lakhani A, et al. Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep. 2020;30:525–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 2014;16:321–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4:292–319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell. 2016;166:1117–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature Rev Clin Oncol. 2018;15:325–40.

    Article  CAS  Google Scholar 

  15. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012;109:17561–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res. 2007;13:3951–9.

    Article  PubMed  CAS  Google Scholar 

  18. Martin JD, Fukumura D, Duda DG, Boucher Y, Jain RK. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. 2016;6:a027094.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Munn LL, Jain RK. Vascular regulation of antitumor immunity. Science. 2019;365:544–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516–27.

    Article  PubMed  Google Scholar 

  22. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci USA. 2011;108:2909–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med. 2017;9:eaan5616.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Regan DP, Chow L, Das S, Haines L, Palmer E, Kurihara JN, et al. Losartan blocks osteosarcoma-elicited monocyte recruitment, and combined with the kinase inhibitor toceranib, exerts significant clinical benefit in canine metastatic osteosarcoma. Clin Cancer Res. 2022;28:662–76.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao Y, Cao J, Melamed A, Worley M, Gockley A, Jones D, et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc Natl Acad Sci USA. 2019:pii:201818357. https://doi.org/10.1073/pnas.1818357116.

  26. Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9:878.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bradbury A, O’Donnell R, Drew Y, Curtin NJ, Sharma Saha S. Characterisation of ovarian cancer cell line NIH-OVCAR3 and implications of genomic, transcriptomic, proteomic and functional DNA damage response biomarkers for therapeutic targeting. Cancers. 2020;12:1939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31:e439–42.

    Article  PubMed  Google Scholar 

  29. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, et al. Murine regulatory T cells induce death of effector T, B, and NK lymphocytes through a contact-independent mechanism involving telomerase suppression and telomere-associated senescence. Cell Immunol. 2018;331:146–60.

    Article  PubMed  CAS  Google Scholar 

  32. Liefers-Visser JAL, Meijering RAM, Reyners AKL, van der Zee AGJ, de Jong S. IGF system targeted therapy: therapeutic opportunities for ovarian cancer. Cancer Treat Rev. 2017;60:90–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies LG, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Grimberg A. Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther. 2003;2:630–5.

    Article  PubMed  CAS  Google Scholar 

  35. Yahya MA, Sharon SM, Hantisteanu S, Hallak M, Bruchim I. The role of the insulin-like growth factor 1 pathway in immune tumor microenvironment and its clinical ramifications in gynecologic malignancies. Front Endocrinol. 2018;9:297.

    Article  Google Scholar 

  36. Pujade-Lauraine E, Fujiwara K, Ledermann JA, Oza AM, Kristeleit R, Ray-Coquard IL, et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 2021;22:1034–46.

    Article  PubMed  CAS  Google Scholar 

  37. Hamanishi J, Takeshima N, Katsumata N, Ushijima K, Kimura T, Takeuchi S, et al. Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan (NINJA). J Clin Oncol. 2021;39:3671–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012;72:1070–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Carstens JL, Correa de Sampaio P, Yang D, Barua S, Wang H, Rao A, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 2017;8:15095.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol. 2019;30:1080–7.

    Article  PubMed  CAS  Google Scholar 

  42. Hallmann R, Zhang X, Di Russo J, Li L, Song J, Hannocks MJ, et al. The regulation of immune cell trafficking by the extracellular matrix. Curr Opin Cell Biol. 2015;36:54–61.

    Article  PubMed  CAS  Google Scholar 

  43. Xing D, Orsulic S. A mouse model for the molecular characterization of brca1-associated ovarian carcinoma. Cancer Res. 2006;66:8949–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21:585–91.

    Article  PubMed  CAS  Google Scholar 

  45. Yee D, Morales FR, Hamilton TC, Von Hoff DD. Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res. 1991;51:5107–12.

    PubMed  CAS  Google Scholar 

  46. Resnicoff M, Ambrose D, Coppola D, Rubin R. Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab Invest. 1993;69:756–60.

    PubMed  CAS  Google Scholar 

  47. Ouban A, Muraca P, Yeatman T, Coppola D. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol. 2003;34:803–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bruchim I, Werner H. Targeting IGF-1 signaling pathways in gynecologic malignancies. Expert Opin Ther Targets. 2013;17:307–20.

    Article  PubMed  CAS  Google Scholar 

  49. Werner H, LeRoith D. The role of the insulin-like growth factor system in human cancer. Adv Cancer Res. 1996;68:183–223.

    Article  PubMed  CAS  Google Scholar 

  50. Ma Y, Zhang L, Peng T, Cheng J, Taneja S, Zhang J, et al. Angiotensin II stimulates transcription of insulin-like growth factor I receptor in vascular smooth muscle cells: role of nuclear factor-kappaB. Endocrinology. 2006;147:1256–63.

    Article  PubMed  CAS  Google Scholar 

  51. Haddad GE, Blackwell K, Bikhazi A. Regulation of insulin-like growth factor-1 by the renin-angiotensin system during regression of cardiac eccentric hypertrophy through angiotensin-converting enzyme inhibitor and AT1 antagonist. Can J Physiol Pharmacol. 2003;81:142–9.

    Article  PubMed  CAS  Google Scholar 

  52. Pickard A, McCance DJ. IGF-binding protein 2 - oncogene or tumor suppressor? Front Endocrinol. 2015;6:25.

    Article  Google Scholar 

  53. Li T, Forbes ME, Fuller GN, Li J, Yang X, Zhang W. IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene. 2020;39:2243–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Remsing Rix LL, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, et al. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal. 2022;15:eabj5879.

    Article  PubMed  Google Scholar 

  55. Baron-Hay S, Boyle F, Ferrier A, Scott C. Elevated serum insulin-like growth factor binding protein-2 as a prognostic marker in patients with ovarian cancer. Clin Cancer Res. 2004;10:1796–806.

    Article  PubMed  CAS  Google Scholar 

  56. Beech DJ, Parekh N, Pang Y. Insulin-like growth factor-I receptor antagonism results in increased cytotoxicity of breast cancer cells to doxorubicin and taxol. Oncol Rep. 2001;8:325–9.

    PubMed  CAS  Google Scholar 

  57. Mamay CL, Mingo-Sion AM, Wolf DM, Molina MD, Van Den Berg CL. An inhibitory function for JNK in the regulation of IGF-I signaling in breast cancer. Oncogene. 2003;22:602–14.

    Article  PubMed  CAS  Google Scholar 

  58. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93:1852–7.

    Article  PubMed  CAS  Google Scholar 

  59. Ajona D, Ortiz-Espinosa S, Lozano T, Exposito F, Calvo A, Valencia K, et al. Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade. Nat Cancer. 2020;1:75–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Brian Seed for providing the cloning vector, we thank Mark Duquette, Naifang Lu, and Anna Khachatryan for their superb technical support, and Dr. Peigen Huang for assisting in animal studies.

Funding

This study was supported by the American Cancer Society Mission Boost Award (to L.X.), NIH R01-NS126187 and R01-DC020724 (to L.X.), Department of Defense Investigator-Initiated Research Award (W81XWH-20-1-0222, to L.X.) and Clinical Trial Award (W81XWH2210439, to L.X.), Children’s Tumor Foundation Drug Discovery Initiative (to L.X.); NIH grant R35-CA197743, and in part through grants R01- R01CA259253, R01-CA269672, R01-NS118929, U01-CA224348 and U01-CA261842 and by Nile Albright Research Foundation, the National Foundation for Cancer Research, Harvard Ludwig Cancer Center, and Jane’s Trust Foundation (to R.K.J.); and Nile Albright Research Foundation, Vincent Memorial Hospital Foundation, NCI P50CA240243, Julie Fund, Worden Family Foundation (to B.R.R).

Author information

Authors and Affiliations

Authors

Contributions

L.X. designed the research; Y.S., Z.Y., Y.Z. and S.L. performed mouse model studies; Y.S., L.W., S.L. performed histological studies; S.S. and P.L. analyzed RNASeq data; Y.S., L.W., B.R.R., and A.M. performed patient sample analysis; Y.S., Z.Y., L.W., Y.Z., I.L.G., S.S., P.L., A.M. and Z.Y. analyzed data; L.X. and R.K.J. wrote the paper.

Corresponding author

Correspondence to Lei Xu.

Ethics declarations

Competing interests

R.K.J. received consultant fees from Cur, Elpis, Innocoll, SPARC, and SynDevRx; owns equity in Accurius, Enlight, and SynDevRx; is on the Board of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund, and Tekla World Healthcare Fund; and received research grants from Boehringer Ingelheim and Sanofi. No funding or reagents from these companies were used in this study. B.R.R. reports serving on the advisory board for VincenTech which has no direct connection to the current research. The other authors have no competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yin, Z., Li, S. et al. Losartan rewires the tumor-immune microenvironment and suppresses IGF-1 to overcome resistance to chemo-immunotherapy in ovarian cancer. Br J Cancer 131, 1683–1693 (2024). https://doi.org/10.1038/s41416-024-02863-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-024-02863-9

This article is cited by

Search

Quick links