Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

ATR inhibition potentiates FOLFIRINOX cytotoxic effect in models of pancreatic ductal adenocarcinoma by remodelling the tumour microenvironment

Abstract

Background

In pancreatic ductal adenocarcinoma (PDAC), the dense stroma rich in cancer-associated fibroblasts (CAFs) and the immunosuppressive microenvironment confer resistance to treatments. To overcome such resistance, we tested the combination of FOLFIRINOX (DNA damage-inducing chemotherapy drugs) with VE-822 (an ataxia-telangiectasia and RAD3-related inhibitor that targets DNA damage repair).

Methods

PDAC spheroid models and organoids were used to assess the combination effects. Tumour growth and the immune and fibrotic microenvironment were evaluated by immunohistochemistry, single-cell analysis and spatial proteomics in patient-derived xenograft (PDX) and orthotopic immunocompetent KPC mouse models.

Results

The FOLFIRINOX and VE-822 combination had a strong synergistic effect in several PDAC cell lines, whatever their BRCA1, BRCA2 and ATM mutation status and resistance to standard chemotherapy agents. This was associated with high DNA damage and inhibition of DNA repair signalling pathways, leading to increased apoptosis. In immunocompetent and PDX mouse models of PDAC, the combination inhibited tumour growth more effectively than FOLFIRINOX alone. This was associated with tumour microenvironment remodelling, particularly decreased proportion of fibroblast activated protein-positive CAFs and increased anti-tumorigenic immune cell infiltration and interaction.

Conclusion

The FOLFIRINOX and VE-822 combination is a promising strategy to improve FOLFIRINOX efficacy and overcome drug resistance in PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The combination of an ATR inhibitor with FOLFIRINOX affects pancreatic cancer cell viability in vitro.
Fig. 2: The VE-822 and FOLFIRINOX combination induces PDAC cell death and a cytostatic effect in CAFs in 2D and 3D co-culture models.
Fig. 3: The VE-822 and FOLFIRINOX combination induces DNA damage and inhibits DNA damage repair pathways.
Fig. 4: The VE-822 and FOLFIRINOX combination inhibits tumour growth in several immunodeficient mouse models and remodulates the tumour microenvironment.
Fig. 5: The VE-822 and FOLFIRINOX combination inhibits tumour growth in an immunocompetent mouse model by increasing immune cell infiltration.
Fig. 6: The VE-822 and FOLFIRINOX combination induces a remodelling of the tumour microenvironment.

Similar content being viewed by others

Data availability

All materials and data described in the manuscript are available to any researcher wishing to use them for non-commercial purposes.

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    CAS  PubMed  Google Scholar 

  2. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl J Med. 2013;369:1691–703.

    Google Scholar 

  3. Conroy T, Castan F, Lopez A, Turpin A, Ben Abdelghani M, Wei AC, et al. Five-year outcomes of FOLFIRINOX vs gemcitabine as adjuvant therapy for pancreatic cancer: a randomized clinical trial. JAMA Oncol. 2022;8:1571–8.

    PubMed  PubMed Central  Google Scholar 

  4. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl J Med. 2011;364:1817–25.

    CAS  PubMed  Google Scholar 

  5. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A quick guide to CAF subtypes in pancreatic cancer. Cancers. 2023;15:2614.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sehdev A, Gbolahan O, Hancock BA, Stanley M, Shahda S, Wan J, et al. Germline and somatic DNA damage repair gene mutations and overall survival in metastatic pancreatic adenocarcinoma patients treated with FOLFIRINOX. Clin Cancer Res. 2018;24:6204–11.

    CAS  PubMed  Google Scholar 

  8. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl J Med. 2019;381:317–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gout J, Perkhofer L, Morawe M, Arnold F, Ihle M, Biber S, et al. Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut. 2021;70:743–60.

    CAS  PubMed  Google Scholar 

  10. Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3:e441.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallez Y, Dunlop CR, Johnson TI, Koh SB, Fornari C, Yates JWT, et al. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression. Mol Cancer Ther. 2018;17:1670–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloyd RL, Wijnhoven PWG, Ramos-Montoya A, Wilson Z, Illuzzi G, Falenta K, et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene. 2020;39:4869–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yap TA, Tan DSP, Terbuch A, Caldwell R, Guo C, Goh BC, et al. First-in-human trial of the oral ataxia telangiectasia and RAD3-related (ATR) inhibitor BAY 1895344 in patients with advanced solid tumors. Cancer Discov. 2021;11:80–91.

    CAS  PubMed  Google Scholar 

  14. Dillon MT, Boylan Z, Smith D, Guevara J, Mohammed K, Peckitt C, et al. PATRIOT: A phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clin Transl Radiat Oncol. 2018;12:16–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Combès E, Andrade AF, Tosi D, Michaud HA, Coquel F, Garambois V, et al. Inhibition of ataxia-telangiectasia mutated and RAD3-related (ATR) overcomes oxaliplatin resistance and promotes antitumor immunity in colorectal cancer. Cancer Res. 2019;79:2933–46.

    PubMed  Google Scholar 

  16. Rabia E, Garambois V, Hubert J, Bruciamacchie M, Pirot N, Delpech H, et al. Anti-tumoral activity of the Pan-HER (Sym013) antibody mixture in gemcitabine-resistant pancreatic cancer models. MAbs. 2021;13:1914883.

    PubMed  PubMed Central  Google Scholar 

  17. Ruscetti M, Morris JP, Mezzadra R, Russell J, Leibold J, Romesser PB, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell. 2020;181:424–41.e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, et al. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med. 2015;7:735–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsumoto H, Okumura H, Murakami H, Kubota H, Higashida M, Tsuruta A, et al. Fluctuation in plasma 5-fluorouracil concentration during continuous 5-fluorouracil infusion for colorectal cancer. Anticancer Res. 2015;35:6193–9.

    CAS  PubMed  Google Scholar 

  21. Takimoto CH, Graham MA, Lockwood G, Ng CM, Goetz A, Greenslade D, et al. Oxaliplatin pharmacokinetics and pharmacodynamics in adult cancer patients with impaired renal function. Clin Cancer Res. 2007;13:4832–9.

    CAS  PubMed  Google Scholar 

  22. Hirose K, Kozu C, Yamashita K, Maruo E, Kitamura M, Hasegawa J, et al. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol Lett. 2012;3:694–8.

    CAS  PubMed  Google Scholar 

  23. Tosi D, Pérez-Gracia E, Atis S, Vié N, Combès E, Gabanou M, et al. Rational development of synergistic combinations of chemotherapy and molecular targeted agents for colorectal cancer treatment. BMC Cancer. 2018;18:812.

    PubMed  PubMed Central  Google Scholar 

  24. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharm Rev. 1995;47:331–85.

    CAS  PubMed  Google Scholar 

  25. Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, et al. Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 2017;23:2806–16.

    CAS  PubMed  Google Scholar 

  26. Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat Commun. 2020;11:1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Glasson Y, Chépeaux LA, Dumé AS, Jay P, Pirot N, Bonnefoy N, et al. A 31-plex panel for high-dimensional single-cell analysis of murine preclinical models of solid tumors by imaging mass cytometry. Front Immunol. 2022;13:1011617.

    CAS  PubMed  Google Scholar 

  28. Windhager J, Zanotelli VRT, Schulz D, Meyer L, Daniel M, Bodenmiller B, et al. An end-to-end workflow for multiplexed image processing and analysis. Nat Protoc. 2023;18:3565–613.

    CAS  PubMed  Google Scholar 

  29. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol. 2022;40:555–65.

    CAS  PubMed  Google Scholar 

  30. Pau G, Fuchs F, Sklyar O, Boutros M, Huber W. EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics. 2010;26:979–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int. 2022;22:166.

    PubMed  PubMed Central  Google Scholar 

  32. Ham IH, Lee D, Hur H. Cancer-associated fibroblast-induced resistance to chemotherapy and radiotherapy in gastrointestinal cancers. Cancers. 2021;13:1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Domen A, Quatannens D, Zanivan S, Deben C, Van Audenaerde J, Smits E, et al. Cancer-associated fibroblasts as a common orchestrator of therapy resistance in lung and pancreatic cancer. Cancers. 2021;13:987.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8:1751.

    PubMed  PubMed Central  Google Scholar 

  35. McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med. 2014;371:1725–35.

    CAS  PubMed  Google Scholar 

  36. Prevo R, Fokas E, Reaper PM, Charlton PA, Pollard JR, McKenna WG, et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther. 2012;13:1072–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br J Cancer. 2020;123:1424–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Perkhofer L, Schmitt A, Romero Carrasco MC, Ihle M, Hampp S, Ruess DA, et al. ATM deficiency generating genomic instability sensitizes pancreatic ductal adenocarcinoma cells to therapy-induced DNA damage. Cancer Res. 2017;77:5576–90.

    CAS  PubMed  Google Scholar 

  39. Dreyer SB, Upstill-Goddard R, Paulus-Hock V, Paris C, Lampraki EM, Dray E, et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology. 2021;160:362–77.e13.

    CAS  PubMed  Google Scholar 

  40. Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Investig. 2021;131:e146987.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 2021;39:548–65.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie L, Xia L, Klaiber U, Sachsenmaier M, Hinz U, Bergmann F, et al. Effects of neoadjuvant FOLFIRINOX and gemcitabine-based chemotherapy on cancer cell survival and death in patients with pancreatic ductal adenocarcinoma. Oncotarget. 2019;10:7276–87.

    PubMed  PubMed Central  Google Scholar 

  43. Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, Kolb A, et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6:1155–61.

    PubMed  Google Scholar 

  44. Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res. 2015;21:3561–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Friedl P, Wolf K. Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem Soc Symp. 2003;70:277–85.

    CAS  Google Scholar 

  46. Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol. 2010;184:1049–61.

    PubMed  Google Scholar 

  47. Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular matrices and cancer-associated fibroblasts: targets for cancer diagnosis and therapy? Cancers. 2021;13:3466.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang YJ, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dias Costa A, Väyrynen SA, Chawla A, Zhang J, Väyrynen JP, Lau MC, et al. Neoadjuvant chemotherapy is associated with altered immune cell infiltration and an anti-tumorigenic microenvironment in resected pancreatic cancer. Clin Cancer Res. 2022;28:5167–79.

    CAS  PubMed  Google Scholar 

  50. Michelakos T, Cai L, Villani V, Sabbatino F, Kontos F, Fernández-Del Castillo C, et al. Tumor microenvironment immune response in pancreatic ductal adenocarcinoma patients treated with neoadjuvant therapy. J Natl Cancer Inst. 2021;113:182–91.

    PubMed  Google Scholar 

  51. Unuvar Purcu D, Korkmaz A, Gunalp S, Helvaci DG, Erdal Y, Dogan Y, et al. Effect of stimulation time on the expression of human macrophage polarization markers. PLoS One. 2022;17:e0265196.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu Y, Fu J, Henderson M, Lee F, Jurcak N, Henn A, et al. CLDN18.2 BiTE engages effector and regulatory T cells for antitumor immune response in preclinical models of pancreatic cancer. Gastroenterology. 2023;165:1219–32.

    CAS  PubMed  Google Scholar 

  53. Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and molecular mechanism of the DNA damage response in immunity and cancer immunotherapy. Front Immunol. 2021;12:797880.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carlsen L, El-Deiry WS. Anti-cancer immune responses to DNA damage response inhibitors: molecular mechanisms and progress toward clinical translation. Front Oncol. 2022;12:998388.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Pelaez M, Young L, Vazquez-Chantada M, Nelson N, Durant S, Wilkinson RW, et al. Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation. Oncoimmunology. 2022;11:2117321.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The staff at the IRCM animal facility, the PDX and MRI platforms, are greatly acknowledged. We acknowledge the 'Réseau d’Histologie Expérimentale de Montpellier'—RHEM facility supported by SIRIC Montpellier Cancer (Grant INCa_Inserm_DGOS_12553), the European Regional Development Foundation and the Occitanie region (FEDER-FSE 2014-2020 Languedoc Roussillon) for processing our animal tissues, histology techniques and expertise. Daniel Vezzio and André Pèlegrin are also acknowledged for their financial support. All the methods and experimental protocols done on live vertebrates were done in accordance with the French regulations and ethical guidelines for experimental animal studies in an accredited establishment (Agreement No. E34-172-27, NFX50-900 certification).

Funding

This work was supported by grants from the Ligue Nationale Contre le Cancer, Comité de l’Hérault, the Gefluc and by the French National Research Agency (ANR) under the Programme Investissement d’Avenir (grant agreement: Labex MabImprove, ANR-10-LABX-53-01).

Author information

Authors and Affiliations

Authors

Contributions

MB, VG, NV, HAM, LG, DB, KB, TB, AE, CJ, IB: collected the data and performed the analysis, LAC, MR, MJ, JC: contributed to informatic analysis tools, MM, PEC, CB: contributed to the collection of the cell lines and samples, VG, NV, DT, NB, CL and CG: contributed to the design of the experiments, VG and MB: contributed to mice experiment, CL and CG conceived, designed the experiments and analyses, MB, NB, PP, CG and CL wrote the paper.

Corresponding author

Correspondence to Christel Larbouret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruciamacchie, M., Garambois, V., Vie, N. et al. ATR inhibition potentiates FOLFIRINOX cytotoxic effect in models of pancreatic ductal adenocarcinoma by remodelling the tumour microenvironment. Br J Cancer 132, 222–235 (2025). https://doi.org/10.1038/s41416-024-02904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-024-02904-3

Search

Quick links