Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

GDP-bound Rab37 modulates M2-like tumor-associated macrophage polarization by attenuating STAT1 translocation to downregulate the type I IFN pathway

Abstract

Background

Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) primarily polarize into the M2-phenotype. Our previous study showed that the small GTPase Rab37 mediates IL-6 trafficking in macrophages for M2 polarization. Here, we uncover an unconventional role of Rab37, independent of vesicle trafficking, in promoting M2 polarization of TAMs.

Methods

The gene profiles in wild-type and Rab37 knockout (KO) bone marrow-derived macrophages (BMDMs) were analyzed using cDNA microarray. The mechanism of Rab37 in regulating the interferon (IFN) pathway was confirmed through in vitro/vivo assays and clinical studies.

Results

Type I IFN signaling was highly enriched in BMDMs from Rab37 KO mice. Moreover, Rab37 induction and decreased type I IFN genes were observed in macrophages treated with lung cancer-conditioned medium and epigenetic drugs, indicating an epigenetic regulation of Rab37 in TAMs. Mechanistically, GDP-bound Rab37 interacted with the nuclear localization sequence of STAT1 to sequest it in the cytosol from its transcription activities, thus leading to the downregulation of IFN genes. Clinically, CD163+/Rab37+/STAT1cytosol in TAMs expression signature correlated with advanced tumor stages and poor survival of lung cancer patients.

Conclusions

Our findings highlight the cytosolic interaction of Rab37-STAT1 in M2 TAM polarization, with CD163+/Rab37+/STAT1cytosol TAMs as a lung cancer prognosis biomarker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cDNA microarray and pathway analyses revealed upregulation of type I IFN signaling pathway in Rab37 KO BMDMs.
Fig. 2: Treatment with epigenetic inhibitor or cancer cell media upregulated Rab37 expression in macrophages, leading to the downregulation of type I IFN pathway.
Fig. 3: Rab37 downregulated type I IFN pathway through attenuation of STAT1 nuclear translocation.
Fig. 4: Rab37 sequestered STAT1 in the cytosol of macrophages in a GDP-dependent manner.
Fig. 5: Rab37 attenuated STAT1 and downregulated IFN-α expression in TAMs in vivo.
Fig. 6: The expression signature of CD163+/Rab37+/STAT1cytosol in TAMs was a biomarker for poor prognosis in lung cancer patients.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang YK, Wang M, Sun Y, Di Costanzo N, Mitchell C, Achuthan A, et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun. 2019;10:3928.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021;24:595–610.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Liu B, Min Q, Yang X, Yan S, Ma Y, et al. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. Cell Discov. 2023;9:96.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen S, Morine Y, Tokuda K, Yamada S, Saito Y, Nishi M, et al. Cancer‑associated fibroblast‑induced M2‑polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor‑1 pathway. Int J Oncol. 2021;59:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tzeng HT, Su CC, Chang CP, Lai WW, Su WC, Wang YC. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. Int J Cancer. 2018;143:1753–63.

    Article  CAS  PubMed  Google Scholar 

  9. Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, et al. Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages. Adv Sci. 2022;9:2102620.

    Article  CAS  Google Scholar 

  10. Hensler M, Kasikova L, Fiser K, Rakova J, Skapa P, Laco J, et al. M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer. J Immunother Cancer. 2020;8:e000979.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS, Hosoya T, Kaneda MM, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2:e93397.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, et al. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci Adv. 2023;9:eadg0654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma S, Sun B, Duan S, Han J, Barr T, Zhang J, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells. Nat Immunol. 2023;24:255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Li S, Malik I, Do MH, Ji L, Chou C, et al. Reprogramming tumour-associated macrophages to outcompete cancer cells. Nature. 2023;619:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86.

    Article  CAS  PubMed  Google Scholar 

  16. Müller E, Speth M, Christopoulos PF, Lunde A, Avdagic A, Øynebråten I, et al. Both type I and type II interferons can activate antitumor M1 macrophages when combined with TLR stimulation. Front Immunol. 2018;9:2520.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ye Q, Luo F, Yan T. Transcription factor KLF4 regulated STAT1 to promote M1 polarization of macrophages in rheumatoid arthritis. Aging. 2022;14:5669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shao Z, Chen L, Zhang Z, Wu Y, Mou H, Jin X, et al. KERS-inspired nanostructured mineral coatings boost IFN-γ mRNA therapeutic index for antitumor immunotherapy. Adv Mater. 2023;35:e2304296.

    Article  PubMed  Google Scholar 

  19. Kim HS, Kim DC, Kim HM, Kwon HJ, Kwon SJ, Kang SJ, et al. STAT1 deficiency redirects IFN signalling toward suppression of TLR response through a feedback activation of STAT3. Sci Rep. 2015;5:13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  21. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55.

    Article  CAS  PubMed  Google Scholar 

  22. Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet. 2018;14:e1007558.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takahashi T, Minami S, Tsuchiya Y, Tajima K, Sakai N, Suga K, et al. Cytoplasmic control of Rab family small GTPases through BAG6. EMBO Rep. 2019;20:e46794.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng J, Duan B, Sun S, Cui J, Du J, Zhang Y. Folliculin Interacts with Rab35 to Regulate EGF-Induced EGFR Degradation. Front Pharmacol. 2017;8:688.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell. 2014;26:754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng KW, Agarwal R, Mitra S, Lee JS, Carey M, Gray JW, et al. Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol Med. 2012;4:125–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Identification of an oncogenic RAB protein. Science. 2015;350:211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo ML, Gong C, Chen CH, Hu H, Huang P, Zheng M, et al. The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 2015;11:111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuo IY, Yang YE, Yang PS, Tsai YJ, Tzeng HT, Cheng HC, et al. Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment. Theranostics. 2021;11:7029–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33:1135–44.

    Article  CAS  PubMed  Google Scholar 

  32. Wu CY, Tseng RC, Hsu HS, Wang YC, Hsu MT. Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer. 2009;63:360–7.

    Article  PubMed  Google Scholar 

  33. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strehlow I, Schindler C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem. 1998;273:28049–56.

    Article  CAS  PubMed  Google Scholar 

  35. McBride KM, Banninger G, McDonald C, Reich NC. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 2002;21:1754–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho SH, Kuo IY, Lu PF, Tzeng HT, Lai WW, Su WC, et al. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis. 2018;9:868.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic. 2018;19:247–52.

    Article  CAS  PubMed  Google Scholar 

  38. Hegde M, Guruprasad KP, Ramachandra L, Satyamoorthy K, Joshi MB. Interleukin-6-mediated epigenetic control of the VEGFR2 gene induces disorganized angiogenesis in human breast tumors. J Biol Chem. 2020;295:12086–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herrmann A, Lahtz C, Song J, Aftabizadeh M, Cherryholmes GA, Xin H, et al. Integrin α6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene. 2020;39:2156–69.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11:1473–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li M, Xu Y, Liang J, Lin H, Qi X, Li F, et al. USP22 deficiency in melanoma mediates resistance to T cells through IFNγ-JAK1-STAT1 signal axis. Mol Ther. 2021;29:2108–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinase USP2a sustains interferons antiviral activity by restricting ubiquitination of activated STAT1 in the nucleus. PLoS Pathog. 2016;12:e1005764.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the Human Biobank, Research Center of Clinical Medicine, National Cheng Kung University Hospital. We thank the technical services provided by the “Bioimaging Core Facility” of the National Core Facility for Biopharmaceuticals, Ministry of Science and Technology, Taiwan, and the support from the Core Research Laboratory, College of Medicine, National Cheng Kung University.

Funding

This work was supported by Taiwan Ministry and Science Technology grant MOST 109-2327-B-006-004 and Taiwan National Science and Technology Council grant NSTC 112-2311-B-006-004-MY3.

Author information

Authors and Affiliations

Authors

Contributions

Chen-Tai Hong: Writing – original draft, Writing – review & editing, Conceptualization, Methodology, Visualization, Formal analysis, Data curation. You-En Yang: Writing – original draft, Writing – revised draft, Writing – review & editing, Conceptualization, Methodology, Data curation, Investigation, Visualization. Hsueh-Fen Juan: Software, Data curation, Investigation. Chih-Peng Chang: Methodology, Validation, Investigation. Yi-Ching Wang: Supervision, Project administration, Conceptualization, Validation, Investigation, Funding acquisition, Data curation, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Yi-Ching Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments using mice were approved by the animal ethics committee of National Cheng Kung University and complied with all relevant ethical guidelines (#112062). All lung cancer samples were conducted in accordance with the requirements of Research Center of Clinical Medicine, National Cheng Kung University Hospital. The use of clinical samples was approved by the institutional review board of the hospital with the ethical number #A-ER-111-517. All patients provided informed consent for the use of the tumor tissues for research.

Consent for publication

All authors have reviewed the final version of the manuscript and are in agreement its content and submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, CT., Yang, YE., Juan, HF. et al. GDP-bound Rab37 modulates M2-like tumor-associated macrophage polarization by attenuating STAT1 translocation to downregulate the type I IFN pathway. Br J Cancer 132, 622–634 (2025). https://doi.org/10.1038/s41416-025-02955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-025-02955-0

Search

Quick links