Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Potentiation of immune checkpoint blockade with a pH-sensitizer as monitored in two pre-clinical tumor models with acidoCEST MRI

Abstract

Background

Tumor acidosis causes resistance to immune checkpoint blockade (ICB). We hypothesized that a “pH-sensitizer” can increase tumor extracellular pH (pHe) and improve tumor control following ICB. We also hypothesized that pHe measured with acidoCEST MRI can predict improved tumor control with ICB.

Methods

We tested the effects of pH-sensitizers on proton efflux rate (PER), cytotoxicity, T cell activation, tumor immunogenicity, tumor growth and survival using 4T1 and B16-F10 tumor cells. We measured in vivo tumor pHe of 4T1 and B16-F10 models with acidoCEST MRI.

Results

Among the pH-sensitizers tested, someprazole caused the greatest reduction in PER without exhibiting cytotoxicity or reducing T cell activation. Esomeprazole improved 4T1 tumor control with ICB administered one day after the pH-sensitizer. Tumor pHe positively correlated with TCF-1 + CD4 effector and CD8 T cell intratumoral frequencies and predicted improved 4T1 tumor control with ICB. For comparison, esomeprazole had a mild effect on B16-F10 tumor pHe, and worsened tumor control with ICB and increased intratumoral myeloid and dendritic cell (DC) frequencies.

Conclusions

A pH-sensitizer can improve tumor control with ICB, and acidoCEST MRI can be used to measure pHe and predict tumor control, but only in the 4T1 model and not the B16-F10 model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Esomeprazole shows the most promise as a pH-sensitizer.
Fig. 2: 4T1 and B16-F10 tumors increase tumor immunogenicity differently when primed with esomeprazole.
Fig. 3: Effects of combination treatment of esomeprazole and ICB injected one day later on tumor growth for 4T1 and B16-F10 tumors.
Fig. 4: Baseline pHe reflects tumor growth rate.
Fig. 5: pHe response to esomeprazole predicts tumor control by esomeprazole treatment followed by ICB.
Fig. 6: AcidoCEST MRI measurements of pHe correlates with intratumoral immune cell frequencies.

Similar content being viewed by others

Data availability

All data is available upon reasonable request to the corresponding author. The AcidoCEST code for Matlab 2022b is available on GitHub at https://github.com/CAMEL-MartyPagel/acidoCEST_MRI_Matlab.

References

  1. Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nature Rev Immunology 2024;24:399–416.

  2. Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Molec Cancer 2023;22:40.

  3. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015;161:205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1480–92.

    Article  CAS  PubMed  Google Scholar 

  5. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Costa EC, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl J Med. 2019;381:2020–31.

    Article  CAS  PubMed  Google Scholar 

  6. Motzer RJ, Tannir NM, McDermott DF, Frontera OA, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl J Med. 2018;378:1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong JSL, Kwok GGW, Tang V, Li BCW, Leung R, Chiu J, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors. J Immunother Cancer. 2021;9:e001945.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adams S, Othus M, Patel SP, Miller KD, Chugh R, Schuetze SM, et al. A multicenter phase II trial of ipilimumab and nivolumab in unresectable or metastatic metaplastic breast cancer: cohort 36 of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART, SWOG S1609). Clin Cancer Res. 2022;28:271–8.

    Article  CAS  PubMed  Google Scholar 

  9. Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9:148–63.

    Article  CAS  Google Scholar 

  10. Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599:1745–57.

    Article  CAS  PubMed  Google Scholar 

  11. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–8.

    CAS  PubMed  Google Scholar 

  12. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16:430–50.

    Article  PubMed  Google Scholar 

  13. Anemone A, Consolino L, Conti L, Irrera P, Hsu MY, Villano D, et al. Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential. Br J Cancer 2021;124:207–16.

    Article  CAS  PubMed  Google Scholar 

  14. Huntington KE, Louie A, Zhou L, Seyhan AA, Maxwell AW, El-Deiry WS. Colorectal cancer extracellular acidosis decreases immune cell killing and is partially ameliorated by pH-modulating agents that modify tumor cell cytokine profiles. Am J Cancer Res. 2022;12:138–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davern M, Donlon NE, O’Connell F, Gaughan C, O’Donovan C, Habash M, et al. Acidosis significantly alters immune checkpoint expression profiles of T cells from oesophageal adenocarcinoma patients. Cancer Immunol Immunother. 2023;72:55–71.

    Article  CAS  PubMed  Google Scholar 

  16. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017;170:1120–1133.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei SC, Anang NAS, Sharma R, Andrews MC, Reuben A, Levine JH, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci USA. 2019;116:22699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–56.

    Article  CAS  PubMed  Google Scholar 

  19. Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, et al. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS Nano 2019;13:10939–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ibrahim-Hashim A, Estrella V. Acidosis and cancer: from mechanism to neutralization. Cancer Metastasis Rev. 2019;38:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gillies RJ, Ibrahim-Hashim A, Ordway B, Gatenby RA. Back to basic: trials and tribulations of alkalizing agents in cancer. Front Oncol. 2022;12:981718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin S, Lee JY, Han J, Li FY, Ling DS, Park W. Tumor microenvironment modulating functional nanoparticles for effective cancer treatments. Tissue Eng. Regen Med. 2022;19:205–19.

    Article  CAS  PubMed  Google Scholar 

  23. de Maar JS, Sofias AM, Siegel TP, Vreeken RJ, Moonen C, Bos C, et al. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour microenvironment. Theranostics 2020;10:1884–909.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ. Targeting the metabolic microenvironment of tumors. Adv Pharmacol. 2012;65:63–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase a: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7:6124–36.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38:65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bailey KM, Wojtkowiak JW, Cornnell HH, Ribeiro MC, Balagurunathan Y, Hashim AI, et al. Mechanisms of buffer therapy resistance. Neoplasia 2014;16:354–64.e1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McDonald PC, Chia S, Bedard PL, Chu Q, Lyle M, Tang L, et al. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol. 2020;43:484–90.

  29. Nehme R, Hallal R, El Dor M, Kobeissy F, Gouilleux F, Mazurier F, et al. Repurposing of acriflavine to target chronic myeloid leukemia treatment. Curr Med. Chem. 2021;28:2218–33.

    Article  CAS  PubMed  Google Scholar 

  30. Scarpignato C, Gatta L, Zullo A, Blandizzi C. Effective and safe proton pump inhibitor therapy in acid-related diseases - A position paper addressing benefits and potential harms of acid suppression. BMC Medicine 2016;14:179.

  31. Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, et al. A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin Cancer Res. 2023;29:1429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kulterer OC, Pfaff S, Wadsak W, Garstka N, Remzi M, Vraka C, et al. A microdosing study with (99m)Tc-PHC-102 for the SPECT/CT imaging of primary and metastatic lesions in renal cell carcinoma patients. J Nucl Med. 2021;62:360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brand K, Aichinger S, Forster S, Kupper S, Neumann B, Nurnberg W, et al. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. Eur J Biochem. 1988;172:695–702.

    Article  CAS  PubMed  Google Scholar 

  34. Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD. Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acidoCEST MRI. Mol Imaging Biol. 2015;17:488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moon BF, Jones KM, Chen LQ, Liu P, Randke EA, Howison CM, et al. A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 2015;10:446–55.

    Article  CAS  PubMed  Google Scholar 

  36. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med. 2014;72:1408–17.

    Article  PubMed  Google Scholar 

  37. Rupp T, Genest L, Babin D, Legrand C, Hunault M, Froget G, et al. Anti-CTLA-4 and anti-PD-1 immunotherapies repress tumor progression in preclinical breast and colon model with independent regulatory T cells response. Transl Oncol. 2022;20:101405.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76:1381–90.

    Article  CAS  PubMed  Google Scholar 

  39. Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. 2019;38:25–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA. 2014;111:11774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett. 2015;167:72–86.

    Article  CAS  PubMed  Google Scholar 

  42. Dowling CM, Hollinshead KER, Di Grande A, Pritchard J, Zhang H, Dillon ET, et al. Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Sci Adv. 2021;7:eabc4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skrzydlewski P, Twaruzek M, Grajewski J. Cytotoxicity of mycotoxins and their combinations on different cell lines: a review. Toxins 2022;14:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, et al. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer. 2010;127:207–19.

    Article  PubMed  Google Scholar 

  45. Irrera P, Roberto M, Consolino L, Anemone A, Villano D, Navarro-Tableros V, et al. Effect of esomeprazole treatment on extracellular tumor pH in a preclinical model of prostate cancer by MRI-CEST tumor pH imaging. Metabolites 2023;13:48.

    Article  CAS  Google Scholar 

  46. Lindner K, Borchardt C, Schöpp M, Bürgers A, Stock C, Hussey DJ, et al. Proton pump inhibitors (PPIs) impact on tumour cell survival, metastatic potential and chemotherapy resistance, and affect expression of resistance-relevant miRNAs in esophageal cancer. J Exp Clin Cancer Res. 2014;33:73.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rong A, Yao Y, Guo X, Jiang W, Jiang M, Yang J, et al. Precise cancer anti-acid therapy monitoring using pH-densitive MnO(2)@BSA nanoparticles by magnetic resonance imaging. ACS Appl Mater Interfaces 2021;13:18604–18.

    Article  Google Scholar 

  48. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73:1524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lechner MG, Karimi SS, Barry-Holson K, Angell TE, Murphy KA, Church CH, et al. Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother. 2013;36:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bohn T, Rapp S, Luther N, Klein M, Bruehl TJ, Kojima N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018;19:1319–29.

    Article  CAS  PubMed  Google Scholar 

  51. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, Huang AC, et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 2019;51:840–855.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211:715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ricca JM, Oseledchyk A, Walther T, Liu C, Mangarin L, Merghoub T, et al. Pre-existing immunity to oncolytic virus potentiates its immunotherapeutic efficacy. Mol Ther. 2018;26:1008–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knopf P, Stowbur D, Hoffmann SHL, Hermann N, Maurer A, Bucher V, et al. Acidosis-mediated increase in IFN-γ-induced PD-L1 expression on cancer cells as an immune escape mechanism in solid tumors. Mol Cancer. 2023;22:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwon YJ, Seo EB, Jeong AJ, Lee SH, Noh KH, Lee S, et al. The acidic tumor microenvironment enhances PD-L1 expression via activation of STAT3 in MDA-MB-231 breast cancer cells. BMC Cancer. 2022;22:852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rahman A, Janic B, Rahman T, Singh H, Ali H, Rattan R, et al. Immunotherapy enhancement by targeting extracellular tumor pH in triple-negative breast cancer mouse model. Cancers. 2023;15:4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huntington KE, Louie A, Zhou LL, Seyhan AA, Maxwell AWP, El-Deiry WS. Colorectal cancer extracellular acidosis decreases immune cell killing and is partially ameliorated by pH-modulating agents that modify tumor cell cytokine profiles. Am J Cancer Res. 2022;12:138–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Giatromanolaki A, Koukourakis IM, Balaska K, Mitrakas AG, Harris AL, Koukourakis MI. Programmed death-1 receptor (PD-1) and PD-ligand-1 (PD-L1) expression in non-small cell lung cancer and the immune-suppressive effect of anaerobic glycolysis. Med. Oncol. 2019;36:76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the MD Anderson Cancer Center Small Animal Imaging Facility and the MD Anderson Cancer Center Advanced Cytometry & Sorting Facility for use of their resources.

Funding

This work was supported by a CPRIT grant (RP220270).

Author information

Authors and Affiliations

Authors

Contributions

RLT, SS, and MDP developed the experimental design. RLT and SS performed Seahorse studies. RLT and FWS developed the in vitro cell cultures and tumor models. RLT performed tumor growth and immunogeneicity studies. RLT and JDLC performed acidoCEST MRI studies. RLT, TL, and ASK performed image analyses. RLT, SP, PKB, SS, and MDP interpreted the results. RLC and MDP wrote the manuscript and all co-authors approved the manuscript.

Corresponding author

Correspondence to Mark D. Pagel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments involving mice were conducted according to Protocol 00001998 approved by the Institutional Animal Care and Use Committee at the UT MD Anderson Cancer Center. All mice were housed in a pathogen-free facility fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, R.L., Li, T., de la Cerda, J. et al. Potentiation of immune checkpoint blockade with a pH-sensitizer as monitored in two pre-clinical tumor models with acidoCEST MRI. Br J Cancer 132, 744–753 (2025). https://doi.org/10.1038/s41416-025-02962-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-025-02962-1

Search

Quick links