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BACKGROUND: The increasing number of cancer survivors, thanks to improved cancer treatments, has escalated the prevalence of
adverse effects, especially chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairment
(CICI). New drug classes, including antibody-drug conjugates (ADCs), are being developed to target cancer cells and avoid noxious
effects. Despite the efforts, ADCs present a high prevalence of neuropathy. A drug often employed in approved ADCs is
Monomethyl Auristatin E (MMAE), a microtubule-based agent. The aim of this study was to investigate the sensory and cognitive
effects of MMAE in a mouse model and test the potential use of lithium to alleviate MMAE-induced neuropathy.
METHODS: We developed a model of MMAE-induced CIPN and CICI and used behavior and sensory tests to analyze these
conditions. We also evaluated calcium signaling and protein levels in neuropathic tissues and tumor progression upon treatments
with lithium and MMAE.
RESULTS: MMAE administration leads to loss of peripheral sensitivity and cognitive impairment and lithium prevents both central
and peripheral neuropathies induced by chemotherapy, without affecting the antitumor activity of MMAE.
CONCLUSION: This study shows that strategies including lithium pretreatment can prevent both central and peripheral
neuropathies induced by chemotherapy to improve quality of life of cancer survivors.

British Journal of Cancer (2025) 133:604–614; https://doi.org/10.1038/s41416-025-03020-6

INTRODUCTION
Chemotherapy, while lifesaving, often causes severe adverse
events, including chemotherapy-induced peripheral neuropathy
(CIPN) and chemotherapy-induced cognitive impairment (CICI).
CIPN leads to chronic pain, sensory deficits, and ataxia, while CICI
affects memory, learning, focus, and multitasking [1–5]. Up to 75%
of cancer patients experience CICI [1, 2]. Treatment for CIPN is only
partially effective, and CICI management relies on nonpharmaco-
logical approaches. No disease-modifying treatments exist, forcing
patients to reduce dosage or duration, compromising efficacy.
Animal models reveal chemotherapy-induced toxicity through

altered calcium (Ca²⁺) signaling, apoptosis, inflammation, oxidative
stress, and deficits in neurogenesis and neurotransmitter release
[6–8]. Despite uncertainties in mechanisms and the lack of
therapies, CIPN and CICI are recognized as significant, under-
addressed issues.

Taxanes, widely used microtubule-targeting chemotherapeutics,
frequently cause neuropathy. New drug classes, including immune
modulators and antibody-drug conjugates (ADCs), aim to reduce
this toxicity. However, many ADCs use potent microtubule-based
agents, still leading to severe neuropathy [2, 9]. As it is anticipated
that microtubule-based chemotherapy agents will continue as an
important treatment option for cancer patients, the need to
prevent CIPN and CICI remains.
Lithium is one of the few agents showing potential for CIPN

prevention [10]. Taxanes elevate intracellular Ca²⁺, activating
calpain, a Ca²⁺-dependent protease that degrades proteins,
disrupts Ca²⁺ signaling, and contributes to neuropathy progression
[10, 11]. Lithium prevents this by blocking the initial Ca²⁺ increase,
avoiding calpain activation and mitochondrial Ca²⁺ overload,
preserving cell function. In mice, lithium did not weaken taxane
chemotherapy’s anticancer effects [11].

Received: 2 September 2024 Revised: 19 March 2025 Accepted: 3 April 2025
Published online: 1 July 2025

1Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. 2Departmento de Morfologia, Universidade Federal de Minas Gerais,
Belo Horizonte, MG, Brazil. 3Departmento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. 4Centro de Desenvolvimento de
Tecnologia Nuclear (CDTN/CNEN), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. 5Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense M, Denmark. 6Departmento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas, Campinas, SP, Brazil. 7Centro de Pesquisa de Medicina de
Precisão, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. 8Department of Pharmacology, Yale University School of Medicine,
New Haven, CT, USA. 9These authors contributed equally: Matheus F. Itaborahy, Isadora Z. L. F. Feng, Uri F. Vieira-Machado. ✉email: barbara.ehrlich@yale.edu; leitemd@ufmg.br

www.nature.com/bjc British Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-025-03020-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-025-03020-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-025-03020-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-025-03020-6&domain=pdf
http://orcid.org/0000-0002-3080-9447
http://orcid.org/0000-0002-3080-9447
http://orcid.org/0000-0002-3080-9447
http://orcid.org/0000-0002-3080-9447
http://orcid.org/0000-0002-3080-9447
http://orcid.org/0000-0001-9354-7280
http://orcid.org/0000-0001-9354-7280
http://orcid.org/0000-0001-9354-7280
http://orcid.org/0000-0001-9354-7280
http://orcid.org/0000-0001-9354-7280
http://orcid.org/0000-0001-9709-8865
http://orcid.org/0000-0001-9709-8865
http://orcid.org/0000-0001-9709-8865
http://orcid.org/0000-0001-9709-8865
http://orcid.org/0000-0001-9709-8865
https://doi.org/10.1038/s41416-025-03020-6
mailto:barbara.ehrlich@yale.edu
mailto:leitemd@ufmg.br
www.nature.com/bjc


This study evaluated whether MMAE induces neuropathy and
tested lithium as a preventive treatment.

MATERIALS AND METHODS
Animals
The experimental procedures done in this study were approved by the
Ethics Committee on the Use of Animals of the Federal University of Minas
Gerais (CEUA-UFMG) under registration number 201/2023 and in
accordance with the relevant guidelines and regulations. The animals
were kept in cages inside ventilated racks with a temperature of 22 ± 1 °C
and humidity of 40–70%, on a 12/12-h light-dark cycle, and had free access
to food and water. All animal experiments were performed during the light
cycle. A total of 70 female C57BL/6 mice were purchased from Central
Vivarium at UFMG and allowed to habituate to the facility for 7 days. The
seven to eight-week-old mice were randomly assigned into 4 groups, with
each group separated in its respective cages of 5–6 animals, in accordance
with the guidelines provided by UFMG. The mice received intraperitoneal
injections of 0.9% saline solution (Farmarin, Brazil) (200 μL), lithium
chloride (Sigma-Aldrich, San Luis, Missouri, USA, 12.8 mg/kg in 0.9%
saline), Monomethyl Auristatin E (MMAE) (BroadPharm, San Diego,
California, USA, 0.12mg/kg in 1% DMSO in saline), or lithium chloride
(12.8 mg/kg in 0.9% saline) co-administered with MMAE (0.12mg/kg in 1%
DMSO in saline). Lithium was administered 1 h before injection of MMAE.
The dosage of MMAE is within the dose range capable of causing central
and peripheral neuropathies [12, 13]. Drug injections took place every
other day over 8 days in a randomized order, to prevent influence from
factors such as time of day. Two additional doses of LiCl (6.4 mg/kg and
3.2 mg/kg) were tested together with MMAE to establish a dose-response
curve for Von Frey and Capsaicin tests.

Behavioral tests: open field, elevated plus maze, and novel
object recognition
Open-field exploration (OF), elevated plus maze (EPM), and novel object
recognition (NOR) tasks were conducted over three consecutive days. The
experimental arena was circular (30 cm) and opaque. Mice habituated in
the testing room for 1 h before experiments. The OF test analyzed
locomotor activity by quantifying movement pattern [10]. The EPM
assessed anxiety-like behavior by measuring time spent in open and
enclosed arms, as well as entries into open arms [14]. For the NOR task, two
50mL Falcon tubes were placed in fixed locations to prevent climbing. In
the habituation phase, mice explored the arena for 10min a day before the
task. In the familiarization phase, they explored two identical tubes for
10min. After 20min, one tube was replaced with a novel object (30 cm
PVC tube), and the mouse explored the arena again for 10min. Video
footage of all experiments was analyzed using ANY-maze (7.1), with an
investigation zone set to measure interactions. The preference index for
the novel object was calculated as 100 × (time spent with novel object /
total time with both objects), with the same method applied to the familiar
object [15]. The number of animals varied per experiment, adhering to
ethical committee guidelines to prevent unnecessary suffering. No stressful
tests were conducted before behavioral evaluations.

Nociception test: capsaicin administration
Capsaicin, an active component of chili peppers, was used to evaluate
nociception effects, aiming to characterize peripheral neuropathy caused
by the administration of the chemotherapeutic drug. Capsaicin (Sigma-
Aldrich, San Luis, Missouri, USA, 1.54 μg in 20 μL in 60% DMSO and 39%
PBS) was injected subcutaneously into the dorsal surface of a hind paw.
The total time each animal spent licking (total lick time) or shaking the paw
was evaluated for 5 min [16]. The experimenters were blinded in relation to
experimental groups to avoid confirmation bias.

Von Frey Test: evaluation of allodynia
Von Frey hairs (0.008 g to 4.0 g, Ugo Basile) were manually applied to
assess allodynia in treated mice. Mice habituated for 30–40min in cylinders
on a wire net table before testing. Monofilaments were applied with
increasing force using the “ascending stimulus” method [17] until
nocifensive responses appeared. Each filament was applied 5 times, with
a threshold set at ≥40% positive responses. Blinding prevented confirma-
tion bias. The apparatus was cleaned with 70% ethanol between trials.
Group comparisons used the logarithm of force values for analysis [18].

Euthanasia and tissue collection of C57BL/6
Mice were anesthetized with xylazine (Ceva Santé Animale, São Paulo, Brazil,
10mg/kg) and ketamine (União Química, São Paulo, Brazil, 80mg/kg) and
then quickly decapitated with scissors. Briefly, the skull was opened, the
brain was extracted and washed in 1X phosphate-buffered saline solution.
Dorsal Root Ganglia (DRG) were extracted and cleaned after isolation of the
spinal column, followed by exposure of the spinal cord [19]. Sciatic nerve was
collected from the right leg and cleaned after exposure. Footpads were then
removed using a 3mm punch biopsy.

FM1-43 staining for afferent sensory fibers of mouse
ex vivo DRG
DRGs were surgically removed from control or treated mice and kept in
DMEM containing 10% FBS until the experiment. Each DRG was loaded
with 4 μM FM™ 1-43 Dye (Invitrogen, Waltham, Massachusetts, USA, Grand
Island, NY) for 40min at 37 °C in a 5% CO2 incubator. Then, coverslips
containing the tissue were transferred to a chamber on the stage of a
confocal microscope. The FM™ 1-43 Dye was used as a fluorescent marker
for lipid membranes, to determine whether there were morphological
alterations on the DRG axons.

Coherent Anti-Stokes Raman Spectroscopy (CARS) of
sciatic nerve
Sections of the sciatic nerve were stained with the fluoromyelin red
staining solution that was prepared by diluting the stock solution 300-fold
in PBS. Nerve sections were flooded with the staining solution for 20min at
room temperature, followed by three washes with PBS, each lasting
10min. Fragments of the sciatic nerve were briefly fixed in 4%
paraformaldehyde and maintained in PBS. The fixed material was
positioned over a coverslip and immersed in PBS to facilitate imaging
with a 40X oil immersion objective. Our configuration employed a
Chameleon Discovery NX (Coherent) laser, and a LSM780 (Zeiss) attached
to an inverted Microscope with forward and backward non-descanned
detectors (PMTs) [20].

Intracellular Ca2+ signaling imaging in mouse ex vivo DRG
DRGs were surgically removed from control or treated mice and kept in
DMEM containing 10% FBS until the experiment. Attention was paid to
remove surrounding connective tissue around the DRG. Each DRG was
loaded with 40 μM Fluo-4/AM (Invitrogen, Grand Island, New York, USA)
and 1% Pluronic F-127 (Sigma, St. Louis, Missouri, USA) for 40min at 37 °C
in a 5% CO2 incubator. Then, coverslips containing the tissue were
transferred to a custom-built perfusion chamber on the stage of a Eclipse
Ti microscope (Nikon, RRID:SCR_021242) with an A1R confocal
(RRID:SCR_020317) [21]. Intracellular Ca2+ signals were monitored upon
stimulation with 50 μM carbachol (Sigma, St. Louis, Missouri, USA) as well
as 5 mM KCl (Sigma, St. Louis, Missouri, USA), using a 20x objective lens.
Ca2+ signals were detected and measured by time-lapse setting. Changes
in fluorescence upon agonist stimulation (F) were normalized by the
baseline fluorescence (F0) and were expressed as (F/F0)*100.

Real-time PCR of NCS1
Total RNA from isolated DRG was extracted using Trizol (Sigma Aldrich)
following the user manual. cDNA was synthesized from 1 μg RNA using the
High-Capacity cDNA Reverse Transcription Kit (Life Technologies). Real-time
PCR was performed with SYBR Green PCR Supermix (Bio-Rad) on a CFX96 Real-
Time PCR system (Bio-Rad). Mouse NCS1 primers (Forward: 5’-AAGGCCAGG-
CAAAAGTGTTC-3’; Reverse: 5’-GCAGTCCTTAATGAAGCCCT-3’) were used.
Relative mRNA expression was determined by the comparative Ct method
using Bio-Rad software, with beta-actin as the reference gene [22].

DRG proteomics
Tissue lysis and protein extraction were performed using a buffer with 5%
SDC, TEAB, protease/phosphatase inhibitors, and pervanadate (Sigma-
Aldrich, Roche). Samples were sonicated, SDC was reduced to 2.5%, and
thiols were reduced/alkylated with TCEP and chloroacetamide (Sigma-
Aldrich) at 45 °C for 20min. Proteins were digested with trypsin (1:50) at
37 °C overnight, SDC was precipitated with formic acid, and the
supernatant was collected. Peptides were labeled with TMT 16plex,
desalted using a C18 column, eluted with ACN/formic acid, and dried in a
SpeedVac.
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LC-MS/MS analysis was performed using an Orbitrap Eclipse mass
spectrometer with HPLC pre-fractionation. The proteomic assay was
performed according to Rodrigues-Ribeiro et al. [23].

Breast cancer xenograft tumor implantation and treatment in
Balb/c nude mice
MDA-MB-231 cells tagged with mKate2 (red fluorescent protein) was a
donation from the Laboratory of Immunology Transplant - University of
São Paulo (USP) and had their identity confirmed using standard analyses
of their shape and growth patterns. They were also regularly tested for
Mycoplasma contamination using 4’,6-diamidino-2-phenylindole staining.
Cells were cultured in DMEM with 10% FBS and antibiotic-antimycotic
solution (penicillin G sodium, 10 units/mL; streptomycin sulfate, 10 mg/mL;
amphotericin B, 0.025mg/mL) in a humidified 5% CO2 atmosphere at
37 °C. For tumor implantation, cells were resuspended in Matrigel (Geltrex™
LDEV-Free Reduced Growth Factor Basement Membrane Matrix) at a
density of 3 × 106 cells/50 μL and injected into the dorsal scapular area of
female Balb/c nude mice. 2 weeks post-implantation, treatment was
initiated as previously described for C57BL/6 mice. During the treatment
period, tumor radius was measured and volume was calculated using the
semi-ellipsoid formula (4/3πr3)/2, normalized to the mouse’s weight [24].

Immunohistochemistry and fluorescence imaging
Ki-67 was used as a proliferation marker for xenograft tumors in Balb/c
nude mice. Paraffin-embedded tissue samples were sectioned and
mounted on histological slides as described previously [22]. TUNEL analysis
detected apoptotic nuclei using the ApopTag® In Situ Peroxidase
Detection Kit (Merck Millipore), following the manufacturer’s protocol.
Quantification was based on five representative images (40× objective)
from three tissue sections (n= 3 each). Formalin-fixed, paraffin-embedded
mouse epidermal sections were de-waxed, and antigen retrieval for TuJ-1
(class III β-tubulin, 1:500) was performed using a citrate buffer for 20min.
Sections were treated with 3% hydrogen peroxide for 30min, blocked with
2.5% horse serum albumin for 1 h, and incubated with TuJ-1 (BioLegend)
for 12 h at 4 °C. Detection used a Biotinylated Pan-Specific Universal
Antibody (VECTASTAIN® Universal Quick Kit, PK-7800) and DAB (ImmPACT
DAB Substrate Kit, SK-4105). Immunostaining was assessed semiquantita-
tively by optical microscopy. Mouse epidermal samples were from six
groups (n= 3 per group). Histological quantification was conducted by a
blinded investigator, with separate analysis to minimize bias. Skin biopsies
are now a standardized tool for diagnosing peripheral neuropathies
[25, 26].

PET-CT imaging of xenograft tumor induced in Balb/c
nude mice
A small-animal PET system (LabPET4 Solo, GE Healthcare) was used for
imaging and semi-quantitative analysis (SUV). Female Balb/c nude mice
were scanned before and two weeks after MDA-MB-231 tumor cell
inoculation in the dorsal left scapular area. Mice fasted for at least 4 h, were
anesthetized with 2% isoflurane in 100% oxygen, administered 10–14 MBq
18F-FDG, and scanned 60min post-injection. They remained warmed and
anesthetized in a supine position during the 15min whole-body static
acquisition (5 bed positions). Images were reconstructed (128 × 128 × 159
matrix, 0.78 × 0.78 × 0.80mm) using a 3D-MLEM algorithm with scatter
correction [27].

Statistical analyses
One-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc
tests were used to compare multiple groups. Two-way repeated ANOVA
followed by Bonferroni’s post-hoc tests were used to analyze the data from
the Novel Object Recognition Test and its training phase. Animals that
presented a freezing behavior were excluded from behavior and sensory
tests. A p < 0.05 was considered statistically significant and the following
notations were used in all figures: * for p < 0.05, ** for p < 0.01, *** for
p < 0.001, and **** for p < 0.0001. For all graphs, error bars shown were
standard deviation (SD).

RESULTS
MMAE injections do not alter weight, locomotion, or anxiety
This study established a mouse model of chemotherapy-induced
neuropathy using MMAE, confirmed through nociception and

behavioral tests. Mice exhibited normal species-consistent beha-
vior. No significant weight loss differences were observed
between treatment and control groups (Supplementary Fig. 1a).
Likewise, no significant differences were found in the open field
(Fig. 1b, c) or elevated plus maze tests (Fig. 1d), indicating MMAE
did not induce anxiety-like behavior or locomotor impairment
under the study protocol.

MMAE administration induces short-term memory
impairment that can be prevented with lithium pretreatment
To determine whether MMAE administration induced cognitive
impairment, the Novel Object Recognition (NOR) test was
employed, targeting short-term memory acquisition. This series
of tests also evaluated the effectiveness of lithium co-
administration as a strategy to prevent MMAE-induced cognitive
impairment. During the training phase, mice showed no
preference for either object (p > 0.05) (Fig. 1f). During the testing
phase, control mice receiving only saline or lithium showed a
significant preference for the novel object (p > 0.001). In contrast,
mice receiving MMAE showed no preference for either object,
indicating impaired short-term memory acquisition (p > 0.05)
(Fig. 1g). When pretreated with lithium, animals in which MMAE
was administered maintained the preference for the novel object.
These results show that MMAE decreased short-term memory
acquisition in mice and that lithium pretreatment prevents this
cognitive impairment.

MMAE administration induces peripheral neuropathy that can
be prevented with lithium pretreatment
A nociceptive test using capsaicin was performed. Mice exhibited
an immediate licking/shaking response post-injection. MMAE-
treated mice had reduced licking time (73.6 ± 5.0 s) compared to
the saline group (104.7 ± 6.3 s; p < 0.001) (Fig. 2a, orange bar).
Lithium pretreatment prevented MMAE-induced nociception
loss (102.8 ± 12.7 s; p < 0.001). This effect persisted 28 days
post-treatment (Fig. 2b). Lithium alone did not alter nociception
(102.8 ± 8.19 s) (Fig. 2a, green bar). Allodynia, another
chemotherapy-induced neuropathy effect, was tested using
Von Frey Monofilaments. MMAE reduced the mechanical
threshold (3.5 ± 0.3 g) vs. control (4.2 ± 0.1 g; p < 0.001) (Fig. 2e),
indicating hypersensitivity. Lithium co-administration fully pre-
vented allodynia, with responses similar to control (4.3 ± 0.1 g;
p > 0.05). Thus, lithium co-administration prevented both noci-
ception loss and allodynia. A lithium dose-response curve in
both tests showed lower doses provided reduced CIPN preven-
tion. In the Capsaicin test, 3.2 mg/kg lithium did not significantly
improve licking time (p > 0.05) vs. MMAE, but 6.4 mg/kg
prevented nociception loss (p > 0.05 vs. saline) (Fig. 2c). In the
Von Frey test, 3.2 mg/kg and 6.4 mg/kg lithium groups showed
no significant differences in hypersensitivity vs. MMAE (both
p > 0.05) (Fig. 2f).

Lithium prevents peripheral nerve damage induced by MMAE
To assess morphological changes in afferent fibers from the
peripheral nervous system, DRG extracted from treated mice were
stained with FM1-43 Dye to visualize myelin along axons (Fig. 3a).
Myelin thickness was significantly reduced in MMAE-treated mice
(5.9 ± 2.0 μm) compared to controls (7.9 ± 1.8 μm; p < 0.0001)
(Fig. 3d). Lithium co-treatment preserved myelin thickness
(7.6 ± 1.9 μm; p > 0.05). CARS was employed to visualize lipidic
membranes and detect myelin along the DRG axons by utilizing a
narrow band-pass filter (660–685 nm) to isolate the CARS signal at
670 nm (Fig. 3b). Quantitative analysis showed significantly
thinner myelin in MMAE-treated mice (3.983 ± 0.158 μm) com-
pared to controls (5.519 ± 0.152 μm; p < 0.0001) (Fig. 3e). Lithium
co-treatment maintained axon widths (5.893 ± 0.247 μm; p > 0.05),
similar to saline-injected controls. Nerve fiber branching density
was assessed in skin biopsies using TuJ-1 staining to visualize
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small-caliber intra-epidermal nerve fibers (Fig. 3c). The assay was
employed to visualize the number and morphology of somatic,
small-caliber, intra-epidermal nerve fibers. The number of
branches was significantly higher in saline (1.450 ± 0.152
branches/mm²) and lithium (1.558 ± 0.131 branches/mm²) groups
compared to MMAE-treated mice (0.551 ± 0.025 branches/mm²;
p > 0.05) (Fig. 3f). Lithium co-treatment significantly restored
branching density (1.446 ± 0.267 branches/mm²; p < 0.001 vs.
MMAE, p > 0.05 vs. saline). These results indicate that MMAE
causes substantial peripheral nerve damage, including DRG fiber
shrinkage and small fiber neuropathy. Lithium co-treatment
effectively prevented degeneration, preserving DRG axon integrity
and intra-epidermal nerve morphology.

MMAE treatment reduces DRG Ca2+ signaling amplitude that
can be prevented with lithium pretreatment
Previous studies have shown that Ca2+, a key regulator of
numerous cellular functions, is an important component in the
pathway leading to degeneration caused by taxanes [28, 29].
Therefore, measurements of Ca2+ transients after stimulation with
neuron-specific agonists were performed in ex vivo DRG to assess
the effect of MMAE and lithium treatments. We observed that the
amplitude of the Ca2+ transient upon carbachol stimulation was
significantly lower in the MMAE group (109.3 ± 5.2) compared to
the control group (119.2 ± 5.2; p < 0.01) (Fig. 4d). This result
indicates that an alteration of Ca2+ signaling occurs with MMAE
treatment and is part of the pathway leading to CIPN. Moreover, in
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the MMAE-treated group a change in the pattern of the Ca2+

transient was also observed, with a higher number of cells
responding in an oscillatory manner (Fig. 4f). Lithium was able to
prevent the changes in the Ca2+ signaling pattern as well as the
reduction in the Ca2+ transient amplitude, which presented values
comparable to the control group (121.2 ± 10.4; p > 0.05). However,
when KCl was used as the stimulus, no difference was observed
among the groups (p > 0.05) (Fig. 4c). Carbachol acts as an agonist
for both muscarinic (G protein-coupled) and nicotinic (ionotropic)
receptors, whereas KCl acts only by activation of voltage-operated
Ca2+ channels [30]. Therefore, a selective alteration in the
response to carbachol, but not to KCl, indicates that the reduction
of Ca2+ signal amplitude comes primarily from alterations in Ca2+

release from the endoplasmic reticulum, rather than Ca2+ flux
across the plasma membrane. These results show that the
pathological pathways associated with MMAE treatment involve
an impairment of the cellular components that regulate intracel-
lular Ca2+ signals. Lithium is also able to maintain the intracellular
Ca2+ signaling pattern comparable to the control pattern.

Insights of the mechanism: protein expression in DRG
The role of neuronal calcium sensor-1 (NCS1) in chemotherapy-
induced neuropathy has been described for taxane treatment,
where its expression decreases soon after administration and
remains low post-chemotherapy [10, 11]. To evaluate whether
NCS1 is involved in MMAE-induced cognitive impairment, we

measured its expression via RT-PCR in treated mouse brains. No
significant alterations were found in NCS1 mRNA levels in any
group (p > 0.05) (Supplementary Fig. 3), suggesting that MMAE-
induced dysfunction differs from taxane-induced CIPN [11]. A Live
& Dead assay performed in DRG taken from treated mice showed
that no differences were observed among groups in terms of cell
death (Supplementary Fig. 2), indicating that the pathology of
CIPN may not necessarily involve death.
A proteomics assay was performed on DRG to identify

mechanisms underlying neuronal morphology changes and
impaired intracellular Ca²⁺ signaling (Fig. 5, Supplementary
Table 1). Analyzing the results, we grouped proteins in 3
functional groups: Ca2+-Related proteins, proteins related to
Inflammation and Tissue Damage and proteins that are linked to
Nerve Damage and Repair.
Calumenin (Calu), a Ca2+-binding protein localized in the

endoplasmic reticulum, is significantly increased in MMAE-
treated DRG, and its up-regulation has been previously shown in
injured rat nerves (p < 0.05) [31, 32]. Other proteins that are
associated with intracellular Ca2+ signaling were also found to be
altered by MMAE, and mainly down-regulated, such as Ras
GTPase-activating protein-binding protein 2 (G3bp2), Alpha-
soluble NSF attachment protein (Napa) (N-ethylmaleimide-sensi-
tive factor attachment protein alpha), cAMP-dependent protein
kinase type II-beta regulatory subunit (Prkar2b) and Astrocytic
phosphoprotein (Pea15) (p < 0.05). Previous studies demonstrate
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that changes in expression and regulation of Pea15 are present in
several diseases including cancer, diabetes mellitus, cardiovascular
disease and, in particular, neurological disorders. Interestingly,
Pea15 was the only of this list that is also downregulated upon LiCl
+MMAE therapy (p < 0.05), while all the other proteins were
brought back to control levels (p > 0.05). It is likely that the up or
down-regulations found in these proteins are related to the
impairment of Ca2+ signaling and/or the subsequential cascades
that are affected by MMAE.
Another relevant finding was that collagens type I alpha-1

(Col1a1) and alpha-2 (Col1a2) and collagen type XI alpha-1 (Col11a1)
were all substantially increased in MMAE-treated DRG (p < 0.05).

These increased levels are in agreement with several other up-
regulated proteins that are linked to inflammatory processes, such
as Coagulation factor XIIIa (F13a1), Fibroblast growth factor-
inducible protein 13 (Ppm1g), Prolargin (Prelp) and Parathymosin
(Ptms) (p < 0.05). All these proteins were maintained at control levels
by lithium pretreatment (p > 0.05 in comparison to saline).
Furthermore, Protein disulfide-isomerase A6 (Pdia6) was found

to be decreased in MMAE-treated DRG, and lithium could prevent
this effect (p < 0.05). This is an intriguing finding, since Pdia6 plays
an important role in nerve damage repair [30]. Other proteins that
were previously associated with nerve damage repair, including
Catenin alpha-1 (Ctnna1), Inter-alpha-trypsin inhibitor heavy chain
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H1 (Itih1) and Coiled-coil and C2 domain containing 1B (Cc2d1b),
are up-regulated in the group treated only with MMAE (p < 0.05)
[33–35]. Note also that N-myc downstream-regulated gene 1
protein (Ndrg1), which has been associated with myelin recovery
and Decorin (Dcn), previously linked to axon regeneration, are
increased in MMAE-treated DRG (p < 0.05) [36–38]. One possible
explanation for the increase in these protein levels is their action
as repair mechanisms, once the nerve damage is present in
MMAE. Lithium pretreatment was able to prevent the alterations
of all these proteins (p > 0.05 in comparison to saline).
Unlike paclitaxel treatment, MMAE did not alter calpain (Capn1,

Capn2), myristoylated alanine-rich C-kinase substrate (Marcks), or

protein kinase C alpha (PKCα/Prkca) levels (p > 0.05) (Fig. 5, last
panel) [10].
Together, these findings compellingly suggest that MMAE

treatment is capable of causing alterations in protein levels in
DRG, especially those proteins involved in intracellular Ca2+

signaling pathways and neuronal damage, and that LiCl co-
therapy was able to prevent these changes.

Lithium treatment does not weaken the antitumor effect
of MMAE
It is crucial to ensure that the pretreatment with lithium does not
interfere in the antitumor effect of MMAE. Therefore, an in vivo
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experiment was performed to induce xenograft tumors, and then
to measure and analyze the differences in tumor size after
treatment among the groups (Fig. 6). The group treated only with
MMAE and the group pretreated with lithium before MMAE
administration presented shrinkage of the xenograft tumor during
the experiment (Fig. 6b) and the tumor size of these groups after
finishing the treatment (0.8 ± 0.3 mm3/g and 0.7 ± 0.7 mm3,
respectively) was significantly smaller than the control group
(1.6 ± 0.6 mm3; p < 0.05) (Fig. 6c). DAPI and mkate2 fluorescence,
together with Ki-67 staining, were used to confirm the injected
cells were present and proliferating in the tumor (Supplementary
Fig. 4c). PET-CT images showed that lithium did not weaken the
ability of MMAE to diminish the final tumor size (Supplementary
Fig. b). With this PET-CT technique, nearby structures (scapula,
ribs) also presented radiopharmaceutical affinity. However, we
were able to at least confirm the tumor placement. TUNEL analysis
demonstrated the presence of apoptosis in tumors of both MMAE
and LiCl+MMAE groups, showing a significantly higher number of
positive cells in animals pretreated with lithium (Fig. 6d, e).
Together, these results indicate that lithium administration does
not harm the antitumor effect of MMAE treatment.

DISCUSSION
In this study we examined the effects of MMAE, the drug cargo of
several ADCs, a class of chemotherapy agents developed to better
target cancer cells and to avoid off-target effects. Unfortunately,
like all chemotherapy agents developed to date, there are
therapy-induced side effects, notably neuropathy, with MMAE
containing ADCs [39]. Previous reports of the effects of MMAE
have focused on CIPN [39], which we have extended here to show
that both the sensory and cognitive effects of MMAE occur. These
results show that the neurological side effects can be mimicked by
the drug cargo alone. This outcome is similar to the outcomes
after the administration of the taxanes or the vinca alkaloids, also
microtubule-based drugs like MMAE. Again, comparable to

previous findings [10, 11, 40, 41], we found that lithium
pretreatment before MMAE administration prevents both CIPN
and CICI. The results of this study show lithium pretreatment
emerges as a promising intervention in preventing both central
and peripheral neuropathies induced by ADCs containing
microtubule-based cargo.
Both paclitaxel and vincristine, two widely used chemotherapy

agents, bind to tubulin, despite having opposite effects on
microtubule stability [42–44]. It has been proposed that these
drugs bind to NCS1, which leads to activation of the protease
calpain, cleaving multiple proteins and ultimately decreases
intracellular Ca2+ levels [11, 45, 46]. However, in the study
reported here, the NCS1 mRNA levels were not altered by MMAE
treatment in the brain. Nonetheless, the amplitude of intracellular
Ca2+ signaling was reduced, similar to other microtubule-based
agents. These results show that reduction in intracellular Ca2+ level
is a common pathway for chemotherapy-induced neuropathy,
even though NCS1 role may differ.
Proposed mechanisms of chemotherapy induced neuropathy

include alteration of intracellular Ca2+ signaling, mitochondrial
malfunction and neuroinflammation. Through a proteomic assay,
we confirmed the involvement of proteins of all these pathways in
our model of CIPN. Other proteins that have been implicated in
the pathogenesis of taxane and vinca alkaloid induced neuro-
pathy include protein kinase C (PKC) [10, 47, 48], interleukin 6 (IL6)
[49, 50], and the components of the Wnt signaling pathway [51].
Some of the proteins (Calpain, PKC) were found to be comparable
to the control group, suggesting a different pathological
mechanism.
In this study we found that treatment with MMAE reduced Ca2+

signal amplitude and increased intracellular Ca2+ oscillations. This
finding is comparable to reports that neuroblastoma cells (SHSY-5Y
cells) or DRG isolated from mice treated with either paclitaxel or
vincristine had reduced intracellular Ca2+ signals [52] and increased
Ca2+ oscillations [45]. We show in this report that lithium is able to
stabilize the Ca2+ signaling in DRG of MMAE treated mice by
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mobilization of intracellular Ca2+ compartments rather than through
the influx of Ca2+ across the plasma membrane, as shown in the lack
of response in experiments using carbachol and KCl as stimuli.
Once neuropathy is evident, the strategies to treat the condition

are limited. In most cases the duration or dosage for treatment is
reduced, limiting potential eradication of the tumor. Thus, there is
a shift to a search for ways to prevent CIPN, including cooling of
the extremities and exercise. Although there are some reports of
good outcomes, they are limited and none of these strategies
have been proven effective in preventing CICI [4]. Lithium
pretreatment prevents intracellular Ca²⁺ reduction and functional
impairments in animal models treated with taxanes [10, 11],
vincristine [53], and MMAE (this report), preserving neuronal
function despite chemotherapy exposure. While some reports
suggest lithium may prevent neuropathy in humans [54, 55],
clinical studies remain inconclusive, often insufficient by low
dosages. Lithium’s modulation of NCS1 function is dose-
dependent [56], and our study confirms that in MMAE-induced
neuropathy, lithium dosage is critical. Dose-response curves
indicate differing lithium doses are needed to prevent allodynia
and loss of nociception, with half the proposed dosage preventing
nociception loss but not allodynia.
Any interventions proposed to prevent CIPN and CICI must

show that the ability to treat cancer is maintained. For all
microtubule-based chemotherapy agents tested, specifically

paclitaxel and MMAE, pretreatment with lithium did not alter
the ability to shrink tumors ([11] and Figs. 4 and 5). There is
evidence that lithium itself can have antitumor effects, by
enhancing immune responses against the tumor, inhibiting
proliferation and migration or induction of programmed cell
death [57]. Our data also shows that lithium can increase
apoptosis in tumoral tissues, as observed in the TUNEL assay,
although the tumor size was not significantly changed by
addition of lithium to the MMAE treatment. This could be due to
different protocols in terms of dosage and duration of
treatment.
The ultimate goal of this study was to develop a model to

expedite the search for safe therapeutic compounds that will
alleviate the onset and severity of neuropathy without serious side
effects. Such a model now exists and an initial strategy for
prevention using lithium pretreatment has been identified. While
animal models provide valuable information, these findings are
limited due to differences between species, highlighting the need
for clinical trials in human subjects.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
in the figshare repository, https://doi.org/10.6084/m9.figshare.26895724.v1.
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