Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Evaluating CAR-T cells from neurofibromatosis type 1 (NF1) patients for targeting AXL in malignant peripheral nerve sheath tumors associated with NF1

Abstract

Background

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by neurofibromas, with 5–13% of patients risk developing malignant peripheral nerve sheath tumors (MPNST). Current treatments for MPNST are largely ineffective. AXL, overexpressed in MPNST, is a potential target for Chimeric Antigen Receptor T (CAR-T) cell therapy. This study evaluates the immunophenotypes, efficacy, and safety of NF1-derived AXL-CAR-T cells in treating MPNST.

Methods

AXL-CAR-T cells, containing an anti-AXL single-chain variable fragment, were derived from NF1 patients (n = 27) and healthy donors (n = 15). Immunophenotypes were characterized using CCR7, CD45RA, CD4, and CD8 markers. The cytotoxicity of CAR-T cells was tested in vitro against MPNST cells, and efficacy and safety were evaluated in an MPNST xenograft mouse model. Multiplex immunoassays and ELISA measured cytokines and granzyme b release.

Results

AXL-CAR-T cells from both NF1 patients and healthy donors had a similar partition in stem cell-like memory T cell composition and comparable ex vivo expansion. AXL-CAR-T cells from both groups effectively lysed MPNST cells in vitro. In vivo, tumor volumes in xenograft mice were significantly reduced with no on-target off-tumor toxicity.

Conclusions

NF1 patient-derived AXL-CAR-T cells demonstrated similar quality and efficacy to those from healthy donors, supporting their potential autologous therapy for MPNST.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AXL expression on the surface of MPNST cells and generation of AXL-specific CAR-T cells.
Fig. 2: Immunophenotype characterization of AXL-CAR-T cells.
Fig. 3: Cytotoxicity of AXL-CAR-T cells from healthy donors and NF1 patients against MPNST cells.
Fig. 4: Efficacy of AXL-CAR-T cell therapy in MPNST xenograft mouse model.
Fig. 5: Evaluation of the efficacy and on-target, off-tumor effects of AXL-CAR-T cells with YW327.6S2 scFv, an antibody recognizing both mouse and human AXL.
Fig. 6: Cytokine and granzyme B secretion by activated AXL-CAR-T cells from healthy donors and NF1 patients.

Similar content being viewed by others

Data availability

All the data relevant to this study are included in the article. Further inquiries can be directed to the corresponding author.

References

  1. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Friedman JM, Birch PH. Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet. 1997;70:138–43.

    Article  PubMed  CAS  Google Scholar 

  3. Lee MJ, Stephenson DA. Recent developments in neurofibromatosis type 1. Curr Opin Neurol. 2007;20:135–41.

    Article  PubMed  CAS  Google Scholar 

  4. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3:17004.

    Article  PubMed  Google Scholar 

  5. Korf BR. Plexiform neurofibromas. Am J Med Genet. 1999;89:31–7.

    Article  PubMed  CAS  Google Scholar 

  6. Evans D, Baser M, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39:311–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hirose T, Scheithauer BW, Sano T. Perineurial malignant peripheral nerve sheath tumor (MPNST): a clinicopathologic, immunohistochemical, and ultrastructural study of seven cases. Am J Surg Pathol. 1998;22:1368–78.

    Article  PubMed  CAS  Google Scholar 

  8. Hruban RH, Shiu MH, Senie RT, Woodruff JM. Malignant peripheral nerve sheath tumors of the buttock and lower extremity. A study of 43 cases. Cancer. 1990;66:1253–65.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13:370–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127:3312–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Criscitiello C. Tumor-associated antigens in breast cancer. Breast Care. 2012;7:262–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu G, Zhang Q, Zhang J, Liu F. Targeting tumor-associated antigen: a promising CAR-T therapeutic strategy for glioblastoma treatment. Front Pharmacol. 2021;12:661606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Golinelli G, Grisendi G, Prapa M, Bestagno M, Spano C, Rossignoli F, et al. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther. 2020;27:558–70.

    Article  PubMed  CAS  Google Scholar 

  16. Weldon JE, Xiang L, Zhang J, Beers R, Walker DA, Onda M, et al. A recombinant immunotoxin against the tumor-associated antigen mesothelin reengineered for high activity, low off-target toxicity, and reduced antigenicity. Mol Cancer Ther. 2013;12:48–57.

    Article  PubMed  CAS  Google Scholar 

  17. Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer. 2014;14:769–85.

    Article  PubMed  CAS  Google Scholar 

  18. Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight. 2019;5:e126117.

  19. Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Brit J Cancer. 2017;116:415–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer. 2014;134:1024–33.

    Article  PubMed  CAS  Google Scholar 

  21. Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The role of Axl receptor tyrosine kinase in tumor cell plasticity and therapy resistance. In: Akslen LA, Watnick RS, editors. Biomarkers of the tumor microenvironment: basic studies and practical applications. Cham: Springer International Publishing; 2017. p. 351–76.

  22. Johansson G, Peng P-C, Huang P-Y, Chien H-F, Hua K-T, Kuo M-L, et al. Soluble AXL: a possible circulating biomarker for neurofibromatosis type 1 related tumor burden. PloS One. 2014;9:e115916.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Torres KE, Liu J, Young E, Huang KL, Ghadimi M, Lusby K, et al. Expression of ‘drugable’ tyrosine kinase receptors in malignant peripheral nerve sheath tumour: potential molecular therapeutic targets for a chemoresistant cancer. Histopathology. 2011;59:156–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen F, Song Q, Yu Q. Axl inhibitor R428 induces apoptosis of cancer cells by blocking lysosomal acidification and recycling independent of Axl inhibition. Am J Cancer Res. 2018;8:1466–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70:1544–54.

    Article  PubMed  CAS  Google Scholar 

  26. Loges S, Heuser M, Chromik J, Sutamtewagul G, Kapp-Schwoerer S, Crugnola M. et al. Phase Ib/II study (NCT02488408/BGBC003) of bemcentinib monotherapy or in combination with cytarabine or decitabine in acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS): FINAL results. Blood. 2023;142:4287.

  27. Leconet W, Larbouret C, Chardès T, Thomas G, Neiveyans M, Busson M, et al. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene. 2014;33:5405–14.

    Article  PubMed  CAS  Google Scholar 

  28. Chang H, An R, Li X, Lang X, Feng J, Lv M. Anti-Axl monoclonal antibodies attenuate the migration of MDA-MB-231 breast cancer cells. Oncol Lett. 2021;22:749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 2010;29:5254–64.

    Article  PubMed  CAS  Google Scholar 

  30. Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Ait-Arsa I, et al. Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 2017;23:2806–16.

    Article  PubMed  CAS  Google Scholar 

  31. Wei J, Sun H, Zhang A, Wu X, Li Y, Liu J, et al. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers. Cell Immunol. 2018;331:49–58.

    Article  PubMed  CAS  Google Scholar 

  32. Farschtschi S, Park SJ, Sawitzki B, Oh SJ, Kluwe L, Mautner VF, et al. Effector T cell subclasses associate with tumor burden in neurofibromatosis type 1 patients. Cancer Immunol Immunother. 2016;65:1113–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Landers SM, Bhalla AD, Ma X, Lusby K, Ingram D, Al Sannaa G, et al. AXL inhibition enhances MEK inhibitor sensitivity in malignant peripheral nerve sheath tumors. J Cancer Sci Clin Ther. 2020;4:511–25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sengsayadeth S, Savani BN, Oluwole O, Dholaria B. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. eJHaem. 2022;3:6–10.

    Article  PubMed  Google Scholar 

  35. Cho JH, Okuma A, Al-Rubaye D, Intisar E, Junghans RP, Wong WW. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci Rep. 2018;8:3846.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cao B, Liu M, Wang L, Zhu K, Cai M, Chen X, et al. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nat Commun. 2022;13:6203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maher J, Davies DM. CAR-based immunotherapy of solid tumours—a survey of the emerging targets. Cancers. 2023;15:1171.

  38. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013;19:3153–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lynn RC, Feng Y, Schutsky K, Poussin M, Kalota A, Dimitrov DS, et al. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. Leukemia. 2016;30:1355–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hombach AA, Schildgen V, Heuser C, Finnern R, Gilham DE, Abken H. T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells1. J Immunol. 2007;178:4650–7.

    Article  PubMed  CAS  Google Scholar 

  41. Robert B, Fauvel B, Cheve G, Yasri A, Larbouret C, Leconet W, et al. Inventor; Institut National de la Santé et de la Recherche Médicale; OriBase Pharma; Universitie de Montpellier 1; Centre Val d’Aurelle Paul Lamarque, assignee. Anti-AXL antibodies and uses thereof. US patent US 9.249,228 B2. 2012.

  42. Mao R, Kong W, He Y. The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: moderate is better. Front Immunol. 2022;13:1032403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Torres KC, Lima G, Simoes ESAC, Lubambo I, Rodrigues LO, Rodrigues L, et al. Immune markers in the RASopathy neurofibromatosis type 1. J Neuroimmunol. 2016;295-296:122–9.

    Article  PubMed  CAS  Google Scholar 

  44. Haworth KB, Arnold MA, Pierson CR, Choi K, Yeager ND, Ratner N, et al. Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget. 2017;8:47.

    Article  Google Scholar 

  45. Tannenbaum C, Hamilton TA. Immune-inflammatory mechanisms in IFNgamma-mediated anti-tumor activity. Semin Cancer Biol. 2000;10 2:113–23.

    Article  Google Scholar 

  46. Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, et al. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. eLife. 2021;10:e65109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Amitrano AM, Berry BJ, Lim K, Kim KD, Waugh RE, Wojtovich AP, et al. Optical control of CD8(+) T cell metabolism and effector functions. Front Immunol. 2021;12:666231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen J, Chernatynskaya AV, Li J-W, Kimbrell MR, Cassidy RJ, Perry DJ, et al. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep. 2017;7:10835.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Domingues S, Isidoro L, Rocha D, Sales Marques J. Neurofibromatosis type 1: a novel NF1 mutation associated with mitochondrial complex i deficiency. Case Rep Genet. 2014;2014:423071.

    PubMed  PubMed Central  Google Scholar 

  50. Allaway RJ, Wood MD, Downey SL, Bouley SJ, Traphagen NA, Wells JD, et al. Exploiting mitochondrial and metabolic homeostasis as a vulnerability in NF1 deficient cells. Oncotarget. 2018;9:15860–75.

    Article  PubMed  Google Scholar 

  51. Huang PY, Shih IA, Liao YC, You HL, Lee MJ. FT895 impairs mitochondrial function in malignant peripheral nerve sheath tumor cells. Int J Mol Sci. 2023;25:277.

Download references

Acknowledgements

Technique and facility support were provided by the third common laboratory at the National Taiwan University Hospital, Taipei, Taiwan. We thank the Academia Sinica Inflammation Core Facility (IBMS) for their technical support. The core facility was funded by the Academia Sinica Core Facility and Innovative Instrument Project (AS-CFII-111-213). We acknowledge Dr. Kai Wang for his critical reading and editing of the manuscript.

Funding

This research was funded by the National Science and Technology Council (NSTC 109-2314-B-002-121-MY3, 113-2314-B-002-275-MY3), Ministry of Education (112L7249, 113L7220), Executive Yuan, Taiwan, and National Taiwan University Hospital (NTUH 112-S257).

Author information

Authors and Affiliations

Authors

Contributions

P-YH and M-JL designed the study and developed the methodology. I-AS, Y-CL and H-LY acquired the data or helped with the data analysis. P-YH and M-JL discussed and interpreted the data. P-YH wrote the manuscript. C-TL and M-JL edited the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Ming-Jen Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The NTUH Research Ethics Committee approved the study protocol (REC number: 202203085RIND). The study protocol was approved by the Institutional Animal Care and Use Committee of the National Taiwan University College of Medicine (IACUC number: 20220051). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, PY., Shih, IA., Liao, YC. et al. Evaluating CAR-T cells from neurofibromatosis type 1 (NF1) patients for targeting AXL in malignant peripheral nerve sheath tumors associated with NF1. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03151-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03151-w

Search

Quick links