Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Fumarate activates the IL-6/JAK/STAT3 pathway by inhibiting KDM4C-mediated H3K36me3 demethylation in FH-knockdown renal cancer cells

Abstract

Background

Fumarate is a small molecule metabolite accumulating in fumarate hydratase-deficient renal cell carcinoma (FH-RCC) cells and plays a key role in the malignant transformation. However, the underlying mechanism remains to be investiagted.

Methods

The comprehensive transcriptomic profiling of FH-knockdown cells was meticulously examined through RNA-sequencing. Differentially expressed genes were validated using qPCR, WB, and IHC. ChIP-qPCR experiments were conducted to evaluate the histones involved in the process. In vivo and in vitro studies revealed fumarate exerts an inhibitory effect on KDM4C activity. Cell proliferation and invasion assays were utilized to assess the roles of FH and KDM4C in FH-RCC tumorigenesis.

Results

We discovered that accumulated fumarate in FH-knockdown ACHN and HK-2 cells competitively binds to α-ketoglutaric acid (α-KG), effectively inhibiting the activity of the histone demethylase KDM4C and significantly increasing the level of histone 3 lysine 36 trimethylation (H3K36me3). The upregulation of H3K36me3 expression triggered the activation of the IL-6/JAK/STAT3 oncogenic signaling pathway and increased the expression of the chemokine CXCL10. Phosphorylated STAT3 (p-STAT3) further enhanced programmed cell death ligand 1 (PD-L1) expression.

Conclusions

Collectively, these findings suggest that combining immune checkpoint blockade (ICB) with a STAT3 inhibitor may hold promise for patients with fumarate hydratase-deficient renal cell carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fumarate activated the IL6/JAK/STAT3 pathway in FH-knockdown cells.
Fig. 2: Knockdown of KDM4C or FH resulted in increased H3K36me3, IL-6R and STAT3 levels.
Fig. 3: The demethylation catalysed by KDM4C is inhibited by fumarate.
Fig. 4: Inhibition of KDM4C resulted in increased expression of PD-L1 and CXCL10.
Fig. 5: KDM4C reduced H3K36me3 levels in FH-knockdown cells.
Fig. 6: Established and validated cell-derived xenograft (CDX) models.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Other raw data are available upon reasonable request from the corresponding author.

References

  1. Moch H, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol. 2022;82:458–68.

    Article  PubMed  Google Scholar 

  2. Grubb RL 3rd, Franks ME, Toro J, Middelton L, Choyke L, Fowler S, et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol. 2007;177:2074–9.

    Article  CAS  PubMed  Google Scholar 

  3. Trpkov K, Hes O, Agaimy A, Bonert M, Martinek P, Magi-Galluzzi C, et al. Fumarate hydratase-deficient renal cell carcinoma is strongly correlated with fumarate hydratase mutation and hereditary leiomyomatosis and renal cell carcinoma syndrome. Am J Surg Pathol. 2016;40:865–75.

    Article  PubMed  Google Scholar 

  4. Joseph NM, Solomon DA, Frizzell N, Rabban JT, Zaloudek C, Garg K. Morphology and immunohistochemistry for 2SC and FH aid in detection of fumarate hydratase gene aberrations in uterine leiomyomas from young patients. Am J Surg Pathol. 2015;39:1529–39.

    Article  PubMed  Google Scholar 

  5. Motzer RJ, Jonasch E, Agarwal N, Alva A, Baine M, Beckermann K, et al. Kidney cancer, Version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20:71–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Merino MJ, Torres-Cabala C, Pinto P, Linehan WM. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol. 2007;31:1578–85.

    Article  PubMed  Google Scholar 

  7. Frezza C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus. 2017;7:20160100.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei MH, Shuch B, et al. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS ONE. 2013;8:e72179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yong C, Stewart GD, Frezza C. Oncometabolites in renal cancer. Nat Rev Nephrol. 2020;16:156–72.

    Article  CAS  PubMed  Google Scholar 

  10. Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J Biol Chem. 2014;289:24691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa AS, Gaude E, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt C, Sciacovelli M, Frezza C. Fumarate hydratase in cancer: a multifaceted tumour suppressor. Semin Cell Dev Biol. 2020;98:15–25.

    Article  CAS  PubMed  Google Scholar 

  14. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. 2011;477:225–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng L, MacKenzie ED, Karim SA, Hedley A, Blyth K, Kalna G, et al. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab. 2013;1:12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gonçalves E, Sciacovelli M, Costa ASH, Tran MGB, Johnson TI, Machado D, et al. Post-translational regulation of metabolism in fumarate hydratase deficient cancer cells. Metab Eng. 2018;45:149–57.

    Article  PubMed  PubMed Central  Google Scholar 

  17. O’Flaherty L, Adam J, Heather LC, Zhdanov AV, Chung YL, Miranda MX, et al. Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum Mol Genet. 2010;19:3844–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adam J, Yang M, Bauerschmidt C, Kitagawa M, O’Flaherty L, Maheswaran P, et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep. 2013;3:1440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA, Shrimp JH, et al. A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol. 2019;15:391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pollard PJ, Spencer-Dene B, Shukla D, Howarth K, Nye E, El-Bahrawy M, et al. Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell. 2007;11:311–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  22. Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sciacovelli M, Frezza C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med. 2016;100:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun G, Zhang X, Liang J, Pan X, Zhu S, Liu Z, et al. Integrated molecular characterization of fumarate hydratase-deficient renal cell carcinoma. Clin Cancer Res. 2021;27:1734–43.

    Article  CAS  PubMed  Google Scholar 

  25. Liang J, Sun G, Pan X, Zhang M, Shen P, Zhu S, et al. Genomic and transcriptomic features between primary and paired metastatic fumarate hydratase-deficient renal cell carcinoma. Genome Med. 2023;15:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739–52.

    Article  PubMed  Google Scholar 

  27. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol. 2007;27:3282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 2016;24:807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saatchi F, Kirchmaier AL. Tolerance of DNA replication stress is promoted by fumarate through modulation of histone demethylation and enhancement of replicative intermediate processing in Saccharomyces cerevisiae. Genetics. 2019;212:631–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, Morris JL, et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature. 2023;615:499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

    Article  CAS  PubMed  Google Scholar 

  32. Carpenter RL, Lo HW. STAT3 target genes relevant to human cancers. Cancers. 2014;6:897–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

  34. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11:1314–21.

    Article  CAS  PubMed  Google Scholar 

  35. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18:374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 2006;442:312–6.

    Article  CAS  PubMed  Google Scholar 

  37. Letfus V, Jelić D, Bokulić A, Petrinić Grba A, Koštrun S. Rational design, synthesis and biological profiling of new KDM4C inhibitors. Bioorg Med Chem. 2020;28:115128.

    Article  CAS  PubMed  Google Scholar 

  38. Tong L, Li J, Li Q, Wang X, Medikonda R, Zhao T, et al. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics. 2020;10:5943–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Zhang Y, Wang S, Ni H, Zhao P, Chen G, et al. The role of CXCR3 and its ligands in cancer. Front Oncol. 2022;12:1022688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–7.

    Article  CAS  PubMed  Google Scholar 

  41. Jie X, Chen Y, Zhao Y, Yang X, Xu Y, Wang J, et al. Targeting KDM4C enhances CD8(+) T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer. J Immunother Cancer. 2022;10:e003716.

  42. Zecchini V, Frezza C. Metabolic synthetic lethality in cancer therapy. Biochim Biophys Acta Bioenerg. 2017;1858:723–31.

    Article  CAS  PubMed  Google Scholar 

  43. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 2005;122:517–27.

    Article  CAS  PubMed  Google Scholar 

  44. Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V, Espejo A, et al. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS ONE. 2009;4:e6789.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhan C, Xu C, Chen J, Shen C, Li J, Wang Z, et al. Development and validation of an IL6/JAK/STAT3-related gene signature to predict overall survival in clear cell renal cell carcinoma. Front Cell Dev Biol. 2021;9:686907.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018;359:801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta S, Cheville JC, Jungbluth AA, Zhang Y, Zhang L, Chen YB, et al. JAK2/PD-L1/PD-L2 (9p24.1) amplifications in renal cell carcinomas with sarcomatoid transformation: implications for clinical management. Mod Pathol. 2019;32:1344–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gelain A, Mori M, Meneghetti F, Villa S. Signal Transducer and Activator of Transcription Protein 3 (STAT3): an update on its direct inhibitors as promising anticancer agents. Curr Med Chem. 2019;26:5165–206.

    Article  CAS  PubMed  Google Scholar 

  51. Beebe JD, Liu JY, Zhang JT. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we?. Pharmacol Ther. 2018;191:74–91.

    Article  CAS  PubMed  Google Scholar 

  52. Lu C, Talukder A, Savage NM, Singh N, Liu K. JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology. 2017;6:e1291106.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu H, Shen J, Lu K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun. 2017;486:239–44.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Lu M, Yuan M, Ye J, Zhang W, Xu L, et al. CXCL10-armed oncolytic adenovirus promotes tumor-infiltrating T-cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology. 2022;11:2118210.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (grant numbers 82273047, 82273073, 82203280, 82472650) and Sichuan Province Science and Technology Support Program (grant numbers 2025ZNSFSC1889, 2024YFHZ0054, 23NSFSC1857).

Author information

Authors and Affiliations

Contributions

JX, XP, and NC designed the experiments. JX and XP performed most of the experiments. JX and LZ performed in vitro experiment. XY, MXZ, and MNZ organised and analyzed the data. YW, JT, LN, and XC provided technical assistance. HZ, QZ, and NC supervised the research. JX, XP, and NC wrote and revised the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Ni Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, J., Pan, X., Kang, Y. et al. Fumarate activates the IL-6/JAK/STAT3 pathway by inhibiting KDM4C-mediated H3K36me3 demethylation in FH-knockdown renal cancer cells. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03195-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03195-y

Search

Quick links