Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Androgen receptor interacts with c-Myc to regulate macrophage-osteoclast axis and drive bone metastasis in triple negative breast cancer

Abstract

Background

Breast cancer distant metastasis is known to exhibit organotropism, with triple negative breast cancer (TNBC) subtypes also displaying organ-specific metastasis. The precise regulatory mechanisms governing this specificity remain unclear.

Methods

Retrospective analysis of metastatic data from public databases was utilized to explore the organotropism of TNBC subtypes. Mouse models combined with single-cell sequencing and immunoprecipitation (CoIP) experiments were utilized to investigate the role and mechanism of androgen receptor (AR) on TNBC bone metastasis. Further analysis of the bone microenvironment combined with CUT&TAG sequencing and osteoclast differentiation experiments was performed to validate the effect of AR and c-Myc interaction on macrophage-osteoclast axis differentiation.

Results

Analysis revealed the luminal androgen receptor (LAR) TNBC subtype had significant bone metastasis propensity. Mouse models showed AR activation promoted LAR TNBC bone metastasis. Using single-cell sequencing, we discovered that c-Myc played a critical role in AR-mediated bone metastasis. Further investigation of the bone microenvironment showed that AR-c-Myc interaction promoted macrophage-osteoclast axis differentiation and macrophage activation via MMP13, ultimately increasing bone resorption.

Conclusions

AR and c-Myc interaction induces macrophage differentiation into osteoclasts and promotes TNBC bone metastasis. These findings elucidate the mechanisms underlying bone metastasis in TNBC subtypes and inform potential interventions for TNBC bone metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AR expression is positively correlated with TNBC osteolytic bone metastasis.
Fig. 2: c-Myc is closely associated with AR-mediated bone metastasis.
Fig. 3: AR interacts with c-Myc to facilitate TNBC bone metastasis.
Fig. 4: Activation of AR promotes macrophage M2 polarization and exhibits osteoclast differentiation characteristics.
Fig. 5: AR interacts with c-Myc to promote macrophage to osteoclast differentiation as well as osteoclast activation.
Fig. 6: AR/c-Myc interaction promotes osteoclast differentiation and activation through MMP13.
Fig. 7: In vivo validation of dual-target inhibition of AR and c-Myc versus single-agent inhibition in suppressing TNBC bone metastasis.

Similar content being viewed by others

Data availability

The accession number for the scRNA-seq data of Ctrl and DHT bone metastatic tumors and CUT&TAG-seq data generated in this article is GEO(GSE236558) and SRA(PRJNA1268216). Other data analyzed in this study were obtained from GEO with accession numbers GSE2603, GSE2034, GSE12276, GSE125989, and GSE110590. All other raw data are available upon request from the corresponding author. Full, uncut gel images are available in the supplemental materials.

References

  1. Si-Qing L, Zhi-Jie G, Juan W, Hong-Mei Z, Bei L, Si S, et al. Single-cell and spatially resolved analysis uncovers cell heterogeneity of breast cancer. J Hematol Oncol. 2022;15:19.

    Article  Google Scholar 

  2. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin cancer Biol. 2020;60:14–27.

    Article  CAS  PubMed  Google Scholar 

  3. Fan JH, Zhang S, Yang H, Yi ZB, Ouyang QC, Yan M, et al. Molecular subtypes predict the preferential site of distant metastasis in advanced breast cancer: a nationwide retrospective study. Front Oncol. 2023;13:978985.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soni A, Ren Z, Hameed O, Chanda D, Morgan CJ, Siegal GP, et al. Breast cancer subtypes predispose the site of distant metastases. Am J Clin Pathol. 2015;143:471–8.

    Article  PubMed  Google Scholar 

  5. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  6. Morante Z, Ku GADlC, Enriquez D, Saavedra A, Luján M, Luque R, et al. Post-recurrence survival in triple negative breast cancer. J Clin Oncol. 2018;36:e13120-e.

    Article  Google Scholar 

  7. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  9. Salvi S, Bonafè M, Bravaccini S. Androgen receptor in breast cancer: a wolf in sheep’s clothing? A lesson from prostate cancer. Semin cancer Biol. 2020;60:132–7.

    Article  CAS  PubMed  Google Scholar 

  10. Tan M, Li J, Xu H, Melcher K, Yong E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36:3–23.

    Article  CAS  PubMed  Google Scholar 

  11. Karantanos T, Corn P, Thompson T. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32:5501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharifi N, McPhaul M, Auchus R. Getting from here to there”-mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J Investig Med. 2010;58:938–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bock N, Shokoohmand A, Kryza T, Röhl J, Meijer J, Tran P, et al. Engineering osteoblastic metastases to delineate the adaptive response of androgen-deprived prostate cancer in the bone metastatic microenvironment. Bone Res. 2019;7:13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yin J, Liu Y, Tillman H, Barrett B, Hewitt S, Ylaya K, et al. AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 2014;74:4306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res. 2021;81:5477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Selli C, Zhou H, Cao J, Wu S, Ma R, et al. Macrophages promote anti-androgen resistance in prostate cancer bone disease. J Exp Med. 2023;220:e20221007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hickey T, Selth L, Chia K, Laven-Law G, Milioli H, Roden D, et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med. 2021;27:310–20.

    Article  CAS  PubMed  Google Scholar 

  18. Park S, Koo J, Kim M, Park H, Lee J, Lee J, et al. Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol. 2011;22:1755–62.

    Article  CAS  PubMed  Google Scholar 

  19. Aceto N, Bardia A, Wittner B, Donaldson M, O’Keefe R, Engstrom A, et al. AR expression in breast cancer CTCs associates with bone metastases. Mol Cancer Res. 2018;16:720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerratana L, Basile D, Buono G, De Placido S, Giuliano M, Minichillo S, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–10.

    Article  CAS  PubMed  Google Scholar 

  21. Coleman R, Croucher P, Padhani A, Clézardin P, Chow E, Fallon M, et al. Bone metastases. Nat Rev Dis Prim. 2020;6:83.

    Article  PubMed  Google Scholar 

  22. Zhang L, Wang Y, Gu Y, Hou Y, Chen Z. The need for bone biopsies in the diagnosis of new bone lesions in patients with a known primary malignancy: a comparative review of 117 biopsy cases. J Bone Oncol. 2019;14:100213.

    Article  PubMed  Google Scholar 

  23. Zhang W, Bado I, Hu J, Wan Y, Wu L, Wang H, et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184:2471–86.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chevalier C, Çolakoğlu M, Brun J, Thouverey C, Bonnet N, Ferrari S, et al. Primary mouse osteoblast and osteoclast culturing and analysis. STAR Protoc. 2021;2:100452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf F, Angerer P, Theis F. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gulati G, Sikandar S, Wesche D, Manjunath A, Bharadwaj A, Berger M, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367:405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu X, Hill A, Packer J, Lin D, Ma Y, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15:2247–76.

    Article  PubMed  Google Scholar 

  29. Stewart C, Gay C, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andreatta M, Carmona S. UCell: robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. 2021;19:3796–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Li J, Gray W, Lehmann B, Bauer J, Shyr Y, et al. TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer Inf. 2012;11:147–56.

    Google Scholar 

  32. Yu C, Wang H, Muscarella A, Goldstein A, Zeng H, Bae Y, et al. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp. 2016;115:53982.

  33. Barton VN, D’Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide. Mol Cancer Therapeutics. 2015;14:769–78.

    Article  CAS  Google Scholar 

  34. Yin J, Pollock C, Kelly K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15:57–62.

    Article  CAS  PubMed  Google Scholar 

  35. Cao L, Xu C, Xiang G, Liu F, Liu X, Li C, et al. AR-PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer. Mol Cancer. 2018;17:136.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zheng Y, Zhou H, Dunstan C, Sutherland R, Seibel M. The role of the bone microenvironment in skeletal metastasis. J Bone Oncol. 2013;2:47–57.

    Article  PubMed  Google Scholar 

  37. Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol. 2023;20:983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lau Y, Danks L, Sun S, Fox S, Sabokbar A, Harris A, et al. RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res Treat. 2007;105:7–16.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao Y, Palomero J, Grabowska J, Wang L, de Rink I, van Helvert L, et al. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Adv. 2017;1:1993–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong L, Smith W, Hao D. Overview of RAW264.7 for osteoclastogensis study: phenotype and stimuli. J Cell Mol Med. 2019;23:3077–87.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mundy G. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    Article  CAS  PubMed  Google Scholar 

  42. Garrido-Castro A, Lin N, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bock N, Kryza T, Shokoohmand A, Röhl J, Ravichandran A, Wille M, et al. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. Sci Adv. 2021;7:eabg2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene. 2019;38:4977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma A, et al. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat Commun. 2022;13:2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elsers D, Masoud E, Kamel N, Ahmed A. Immunohistochemical signaling pathways of triple negative and triple positive breast cancers: what is new?. Ann Diagnostic Pathol. 2021;55:151831.

    Article  Google Scholar 

  47. Ni M, Chen Y, Fei T, Li D, Lim E, Liu X, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, et al. Macrophage-osteoclast associations: origin, polarization, and subgroups. Front Immunol. 2021;12:778078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escamilla J, Schokrpur S, Liu C, Priceman S, Moughon D, Jiang Z, et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 2015;75:950–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamaguchi T, Movila A, Kataoka S, Wisitrasameewong W, Ruiz Torruella M, Murakoshi M, et al. Proinflammatory M1 macrophages inhibit RANKL-induced osteoclastogenesis. Infect Immun. 2016;84:2802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun H, Wang H, Gao C, Tai L, Yang Y, Dong H, et al. F4/80+CD206+ M2-like macrophages contribute to bone erosion in collagen-induced arthritis by differentiating into osteoclasts. Eur J Inflamm. 2023;21:1721727X231194595.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Key National Natural Science Foundation of China (No.82430093).

Author information

Authors and Affiliations

Contributions

Y. Liu: Conceptualization, data curation, software, formal analysis, investigation, visualization, methodology, writing–original draft. L. Fan: Data curation, software, formal analysis, investigation, visualization, methodology. F. Ye: Investigation, visualization, methodology. Y. Zhao: Investigation, visualization, methodology. Y. Zhu: Data curation, software, formal analysis, investigation. Y. Yang: Data curation, software, formal analysis, supervision. F. Xu: Data curation, supervision. Y. Gu: Data curation, supervision. X. Guan: Conceptualization, resources, data curation, supervision, project administration, writing–review and editing. Y. Liu, L. Fan and F. Ye contributed equally to this work as first authors. All authors read and approved the final paper.

Corresponding author

Correspondence to Xiaoxiang Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal studies were conducted according to the NIH Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011) and were approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (IACUC-2205019).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fan, L., Ye, F. et al. Androgen receptor interacts with c-Myc to regulate macrophage-osteoclast axis and drive bone metastasis in triple negative breast cancer. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03202-2

Search

Quick links