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BACKGROUND: The molecular characterisation of pediatric acute lymphoblastic leukemia (pALL) is essential for accurate diagnosis
and risk stratification. However, standard-of-care (SoC) methods have limited sensitivity and resolution.
METHODS: This study evaluates the clinical utility of emerging genomic technologies—including optical genome mapping (OGM),
digital multiplex ligation-dependent probe amplification (dMLPA), RNA sequencing (RNA-seq), and targeted next-generation
sequencing (t-NGS)—in the largest cohort of pALL patients analysed to date, with 60 cases using OGM.
RESULTS: Considering clinically relevant alterations identified with at least two different methods, OGM as a standalone test
demonstrated superior resolution, detecting chromosomal gains and losses (51.7% vs. 35%, p= 0.0973) and gene fusions (56.7% vs.
30%, p= 0.0057), while resolving 15% of non-informative cases. Combining dMLPA and RNA-seq was the most effective approach,
achieving precise classification of complex subtypes and uniquely identifying IGH rearrangements undetected by other techniques.
OGM identified clinically relevant alterations in 90% of cases, and the dMLPA-RNAseq combination reached 95%, compared to
46.7% with SoC techniques.
CONCLUSIONS: Integrating these technologies into diagnostic workflows overcomes SoC limitations. OGM and the dMLPA-RNAseq
combination emerge as front-line strategies, addressing pALL heterogeneity, streamlining molecular testing, and informing
treatment decisions to improve outcomes.

British Journal of Cancer; https://doi.org/10.1038/s41416-025-03204-0

INTRODUCTION
Acute lymphoblastic leukemia (ALL) is the most common pediatric
malignancy, characterised by the uncontrolled proliferation of
lymphoid progenitor cells. The genetic landscape of ALL is highly
heterogeneous, encompassing a wide range of structural variants
(SVs) and single-nucleotide variants (SNVs) that play a critical role in
leukemogenesis. Notably, SVs, including chromosomal rearrange-
ments, deletions, and copy number alterations (CNAs), are enriched in
pediatric ALL (pALL) compared to adult cases [1]. These genetic
abnormalities define distinct molecular subtypes and are crucial for
predicting prognosis and response to therapy [2].
The latest update of the World Health Organization (WHO) [3] and

International Consensus Classification (ICC) [4] increasingly empha-
sise the role of molecular alterations in defining leukemia subtypes.
This is exemplified by the inclusion, for the first time, of entities
defined by SNVs (IKZF1 N159Y, PAX5 P80R). In parallel, modern

treatment protocols, such as the ALLTogether (NCT04307576)
consortium guidelines, have implemented risk stratification strate-
gies based on fusions and CNA profiling, as well as targeted
inhibitors for ABL-class patients and immunotherapy into frontline
therapy. These advancements highlight the heterogeneity of
diagnostic entities, and thus the need to combine genomic
approaches for a precise molecular characterisation that exceeds
the capabilities of current standard-of-care (SoC) methods.
Traditionally, the SoC methods for genetic diagnosis in ALL

relied on conventional cytogenetics, including chromosome
banding analysis (CBA) and fluorescence in situ hybridisation
(FISH). While these methods have been instrumental in detecting
recurrent chromosomal abnormalities, they exhibit significant
limitations, such as low resolution, limited detection capacity for
cryptic alterations, and reliance on viable metaphases [5]. To
overcome these constraints, emerging methodologies such as
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multiplex ligation-dependent probe amplification (MLPA), tar-
geted next-generation sequencing (t-NGS), digital multiplex
ligation-dependent probe amplification (dMLPA), RNA sequencing
(RNAseq), or optical genome mapping (OGM) have been
progressively implemented into the diagnostic workup, offering
enhanced sensitivity and broader detection capabilities [6–8].
Despite the improvement potential of these novel technologies,

each method has inherent strengths and weaknesses in detecting
specific types of genetic alterations. To date, no single approach
has demonstrated a comprehensive coverage of the entire
mutational spectrum of ALL, leaving the optimal diagnostic
strategy for clinical practice unresolved [9]. A systematic evalua-
tion of these methodologies is required to determine the most
effective approach for an accurate and efficient diagnosis in the
clinical setting.
In this study, we analysed a cohort of 60 pALL patients using the

standard-of-care, OGM, t-NGS, MLPA, dMLPA, and RNAseq (when
sufficient genetic material was available). The primary aim was to
assess the diagnostic yield of each method, both individually and
in combination, to identify the most robust strategy for the
comprehensive genomic characterisation of pALL in the clinical
setting. To date, this cohort represents the largest pALL series
characterised by OGM in a clinical setting within a single
institution, providing valuable insights into the optimal diagnostic
workflow for this disease.

MATERIAL AND METHODS
Patients and samples
A total of 60 bone marrow (BM) or peripheral blood (PB) samples (55
diagnoses and 5 relapses) were obtained from pALL patients (49 B-ALL, 11
T-ALL) referred to our institution between August 2021 and August 2024.
The cohort included 36 males (60%) and 24 females (40%), with a median
age of 5 years (range 1–16). The median blast percentage was 90% (range
20–100). Patients were selected solely based on the availability of high-
quality samples to ensure that the cohort accurately reflected real-world
clinical testing conditions.
Written consents were obtained from parents or legal guardians of all

patients according to the recommendations of the Human Rights
Declaration and the Helsinki Conference. This study was approved by
the institutional ethics committee for clinical research.

Standard-of-care baseline
Immunophenotyping was performed by flow cytometry following
standardised procedures. The antibody panel included anti-CD45, CD34,
CD123, CD10, CD19, CD20, CD22, CD9, CD24, CD25, CD15, NG2, CD66c
(KORSA), CD33, CD13, cytoplasmic MPO, nuclear TdT, and cytoplasmic CD3
(Beckman Coulter, CA, USA), as well as CD38, cytoplasmic IgM, and kappa/
lambda light chains (Dako, CA, USA). Cytogenetic analysis was conducted
using G-banding on metaphase chromosomes, with karyotypes inter-
preted according to the International System for Human Cytogenomic
Nomenclature [10]. FISH were performed on interphase nuclei using
commercial probes for BCR::ABL1, KMT2A, ETV6::RUNX1, TCF3, CRLF2, ABL2,
EPOR, PDGFRB, and JAK2, following the manufacturer’s instructions.
Additionally, ETV6::RUNX1 and BCR::ABL1 rearrangements were also
assessed by RT-qPCR as described by Gabert et al. [11].

DNA and RNA isolation
Genomic DNA (gDNA) and total RNA were extracted using the
QIAsymphony SP/AS instrument (Qiagen, Valencia, CA) automated plat-
form. DNA extraction was performed with the QIAamp DNA Mini Kit
(Qiagen), while RNA was isolated using the RNeasy Midi Kit (Qiagen),
following the manufacturer’s instructions. The extracted nucleic acids were
quantified using the Qubit Fluorometer (Thermo Fisher Scientific, San
Francisco, CA, USA) with the Qubit dsDNA High Sensitivity Assay Kit for
DNA and the Qubit RNA HS Assay Kit for RNA.

Emerging methods
Multiplex ligation-dependent probe amplification. The gDNA was isolated
from BM or PB samples as described above. MLPA was performed in

100 ng of gDNA using the SALSA MLPA P335 (BTG1, CDKN2A/B, EBF1, ETV6,
IKZF1, PAR1 region, PAX5 and RB1) (MRC-Holland, Amsterdam, The
Netherlands) following the manufacturer’s instructions. Capillary electro-
phoresis was carried out on a SeqStudio Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA), and data were analysed using
Coffalyser.Net software (MRC-Holland) according to established guidelines.

Digital multiplex ligation-dependent probe amplification. dMLPA was
performed on 50 ng of gDNA using SALSA digitalMLPA D007 Acute
Lymphoblastic Leukemia probemix (MRC-Holland) according manufac-
turer’s recommendations. The probemix includes target probes to identify
recurrent microdeletions or amplifications, and karyotyping probes to
detect gross chromosomal abnormalities along all chromosomes.
Reactions were pooled and sequenced on a MiSeq sequencer with

150 bp single-read chemistry (Illumina, San Diego, CA, USA). Coffalyser
digitalMLPA software (MRC-Holland) was used to analyse the copy number
status. Regions with a probe ratio value around 1.0 (±0.15) were
considered unaffected, while an increased or decreased value indicated
the presence of a gain or loss, respectively. Leukemic cell burden (LCB) was
considered to interpret the results. Subclonal CNAs were only reported if
consecutive probes had dosage values unambiguously falling outside the
range but not reaching the expected ratio for a loss/gain based on the LCB,
and also compared with other affected regions within the same sample.

Optical genome mapping. OGM was conducted on fresh (less than 24 h
after sample collection) or frozen PB or BM samples according to the
standard protocol (Bionano Genomics, San Diego, CA, USA). Briefly, ultra-
high molecular weight genomic DNA (UHMW-DNA) was isolated and
labelled using DLE-1 enzyme and the Bionano Prep direct labelling and
staining (DLS) protocol. A total of 750 ng of labelled UHMW-DNA was
loaded on a Saphyr G2.3 chip and run on Bionano’s Saphyr for imaging.
Quality criteria were as follows: map rates greater than 60%, molecule N50
values >250 kb (for molecules >150 kb), and effective genome coverage
>300×. Genome analysis was performed using the human genome
GRCh38 as a reference, and Bionano Access 1.6 and Bionano Solve
3.6 software. Variant calling was performed with Rare Variant Pipeline and
Guided assembly with standard filter settings.

Next-generation sequencing. t-NGS was performed using the ALLseq
panel (Gil et al. [12]), designed to detect SNVs, insertions/deletions (indels),
CNAs, gene fusions, and gene expression. The full list of targeted genes is
provided in Table S1. Briefly, 10 ng of gDNA and RNA were used for library
preparation, which was automated on the Ion Chef™ System (Thermo
Fisher Scientific). Sequencing was conducted on the Ion S5 sequencer
(Thermo Fisher Scientific). Variant calling was performed using the Ion
Reporter software (Thermo Fisher Scientific), and variants were considered
relevant when their allelic frequency exceeded 3%.

RNAseq. Total RNA was extracted from BM or PB as described above. Due
to limited sample availability, RNAseq was performed in 20 patients.
Quantification and integrity were assessed using a Qubit fluorometer
(Thermo Fisher Scientific) and an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA), respectively. RNA libraries were
prepared using the TruSeq Stranded Total RNA Library Prep Kit (Illumina),
followed by sequencing using paired-end 150 nt reads on the NovaSeq
6000 platform (Illumina), with approximately 20 million reads per sample.
Data processing and bioinformatic analysis were conducted using HISAT2
for alignment and STARfusion for fusion detection. As STARfusion often
reported multiple fusion genes per sample, including false positives, only
high-confidence fusions supported by at least 2 junction reads and
1 spanning fragment read (at least 10,000 nucleotides apart if both genes
were on the same chromosome) were considered. Additionally, specific
parameters were used to identify IG rearrangements as described by
Thomson et al. [13]. Differential gene expression levels were quantified by
DESeq2, and diagnostic entities were predicted using the ALLCatchR
classifier, with >0.5 score considered relevant.

Diagnosis yield assessment across different techniques versus
standard-of-care testing
The diagnostic performance of each technique was evaluated both
individually and in combination with the other. The diagnostic yield was
assessed based on two levels of clinical relevance: (1) Capability to identify
entities recognised by the WHO 2022 and/or ICC 2022 classifications, as
well as risk stratification markers according to the ALLTogether guidelines;
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and (2) Any other pathogenic alterations affecting known drivers in pALL
or associated with prognosis but not currently incorporated into clinical
risk stratification. Diagnostic entities were assigned according to the WHO
2022/ICC classification if a defining driver or a compatible gene expression
profile (GEP) was identified by any of the methods used.
Results were classified at the patient level into three categories based on

concordance: (1) Completely concordant: all detected alterations were
identified by the compared techniques; (2) Partially concordant: some but
not all abnormalities were detected by both techniques; and (3) Discordant:
entirely different abnormalities were identified by the techniques in
comparison. Clinically relevant alterations identified exclusively by a single
technique were further validated using orthogonal methods.

Statistical analysis
Categorical variables were compared using Fisher’s exact test or the chi-
square test, as appropriate, while continuous variables were analysed using
the Mann–Whitney U test or Student’s t-test. The sensitivity and specificity
values of each method were calculated against the standard of care. Co-
segregation of genetic alterations was analysed using the “somaticInterac-
tion” function from the maftools package. All statistical analyses were
performed using R software (version 4.4.2), with a significance threshold
set at p < 0.05 or p < 0.01. Plots were generated with R software (version
4.4.2) using the ggplot2 package and BioRender.

RESULTS
A total of 60 pALL patients underwent initial testing using SoC
techniques. CBA identified high hyperdiploidy (HeH) in 11 cases
(11/60, 18.3%), gene rearrangements in 6/60 (10%) cases,
monosomy/trisomy in 7/60 (11.7%) cases, and was non-
informative in 9 cases (9/60, 15%). FISH detected ETV6::RUNX1

fusion in 7/60 (11.7%) patients, all of which were confirmed by RT-
qPCR. Additionally, CRLF2-r were identified in 3/60 (5%) patients,
while KMT2A-r, JAK2-r, and TCF3-r were each detected in one
patient. Main characteristics of the cohort are shown in Table S2.
Patients with sufficient genetic material were further analysed as
outlined in Fig. S1.

Structural variants
Chromosomal gains and losses
dMLPA: dMLPA identified a total of 191 whole chromosomal
gains and 14 losses across the genome, with an average of 2.55
alterations per patient. Notably, 76.6% of these whole-
chromosome gains and losses were found in 16 patients with a
hyperdiploid karyotype, involving 5–9 chromosomes. The most
frequently gained chromosomes were 21, 14, 10, X, 4, 17 and 6,
with recurrent multiple copies of chromosomes 21, X, 4, and 8
(Fig. 1). Overall, dMLPA detected five additional cases of
hyperdiploidy, with no non-informative results observed.

OGM: OGM identified the same chromosomal gains and losses
as dMLPA. No false positives or false negatives were observed.
Notably, both techniques identified five additional cases of
hyperdiploidy compared to standard-of-care methods, with
complete concordance between them.

Copy number alterations
MLPA: MLPA analysis for CNA-UKALL (BTG1, CDKN2A/B, EBF1,
ETV6, IKZF1, JAK2, PAX5, RB1, and PAR1 region) revealed a total of
79 subchromosomal CNAs across the cohort, with an average of
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Fig. 1 Chromosomal gains and losses identified in the cohort (n= 60). Bars represent the number of alterations detected per chromosome,
categorised as losses (red), single gains (blue), or multiple gains (purple).
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1.3 alterations per patient. The most frequently altered genes were
CDKN2B (27/60, 45%) and CDKN2A (25/60, 41.7%).

dMLPA: dMLPA demonstrated complete concordance with
MLPA for CNA-UKALL and identified 207 additional subchromo-
somal alterations in 37/60 (61.7%) patients. The most frequent
lesions were MTAP (11/60, 18.3%) and MLLT3 deletions (18/60,
30%), both occurring as part of 9p21 deletions, which also harbour
CDKN2A/B. In fact, 83.8% of all biallelic losses and 64.3% of
subclonal alterations were located in 9p (MTAP-MLLT3-CDKN2A/B).
Other commonly observed deletions included VPREB1 (8/60,
13.3%), IGHM (7/60, 11.7%), and ERG (7/60, 11.7%). In contrast,
RUNX1 showed the highest frequency of multiple gains, associated
with iAMP21 in two patients. The deletion pattern at the 1p region
was suggestive of STIL::TAL1 fusion in one patient, further
confirmed by t-NGS and OGM.

OGM: OGM demonstrated full agreement with MLPA and dMLPA
in 55/60 (91.7%) patients for CNA-UKALL. However, discrepancies
were observed in five cases, mainly affecting CDKN2A/B and PAR1.
In two patients, OGM detected a heterozygous CDKN2A/B deletion,
whereas MLPA reported a biallelic loss in one case and no
alteration in another. In another patient, OGM identified a
CDKN2A/B loss with a low variant allele frequency (VAF= 10%)
that was undetected by MLPA and dMLPA. Further discrepancies
included an ETV6 homozygous deletion with a PAR1 duplication
detected by MLPA but classified as wild-type by OGM. Similarly,
MLPA identified heterozygous CDKN2A loss and PAR1 duplication
in two cases, which were not confirmed by OGM (Fig. S2).
Aside from these discrepancies, OGM detected 16 losses that

dMLPA missed due to its targeted genomic coverage. Among
them, four deletions in 11q involved key genes such as KMT2A and
ATM, while two deletions in 13q12.2 affected FLT3. Conversely,
dMLPA identified 16 alterations that OGM did not detect,
including six deletions in IGHM. Of these, 13/16 were too small
to be detected by OGM, one was identified as a subclonal event
by dMLPA, and two alterations in CTCF were incorrectly classified
by OGM (Table S3). The complete distribution of CNAs is depicted
in Fig. 2a.
Co-occurrence of CNAs was analysed to identify potential

association or exclusion patterns (Fig. 2b). This analysis revealed
41 significant positive correlations, with the strongest associations
observed in the 9p region (JAK2, MLLT3, MTAP, CDKN2A/B), as well
as between IGHM and ERG, and TBL1XR1 and FHIT losses.
Additionally, a trend towards mutual exclusivity with other
alterations was noted in hyperdiploid cases; however, no
significant negative correlations were identified.

Fusions
t-NGS: t-NGS targeting recurrent fusions and deregulated
expression in ALL (t-NGS-RNA) (Table S1) identified a total of 18
fusions across 18/60 (30%) patients. The most frequent fusion was
ETV6::RUNX1 (7/18, 38.9%), followed by P2RY8::CRLF2 (4/18, 22.2%).
Additionally, two cases harboured PICALM::MLLT10 (2/18, 11.1%)
and, the least common fusions were STIL::TAL1, MEF2D::BCL9,
PAX5::JAK2, TCF3::ZNF384, and ZMIZ1::ABL1, each detected in one
patient (Fig. 3a). CRLF2 overexpression was found in 3/4 patients
carrying CRLF2-r, and TAL1 in a case harbouring STIL::TAL1, and
TLX3 overexpression was detected in two patients despite the
absence of detectable fusions, suggesting the presence of a
potential non-productive rearrangement (data not shown).

OGM: OGM detected 37 fusions across 34/60 (56.7%) patients,
identifying a significantly higher number of fusions than t-NGS-
RNA and confirming all fusions previously identified by SoC
methods and t-NGS-RNA. Notably, OGM provided a broader
characterisation of PAX5-r, detecting 6 vs. 1 fusions compared with
t-NGS-RNA. Of note, 2 of these 6 cases carried additional

concomitant fusions. In one of them, t-NGS-RNA only identified
the subclonal P2RY8::CRLF2 secondary fusion, whereas OGM also
uncovered the primary event (PAX5::PML) (Fig. 3b).
Beyond clinically relevant fusions, OGM revealed the novel

transcripts RUNX1::GATA3, CDKN2A::KVS1, and ETV6::HNRNPH1, as
well as additional fusions in four patients where t-NGS-RNA had
already identified one rearrangement (Fig. 3b). Furthermore, OGM
showed cryptic or complex structural alterations, such as t(5;14)
(q35.1;q32.2) and multiple translocations, where the precise fusion
partner could not be determined in 5/60 (8.3%) patients.

RNAseq: RNAseq was performed in 20/60 (33.3%) patients,
providing a more detailed characterisation of fusion events
compared to those identified by t-NGS-RNA or OGM. A total of
21 fusions were detected across 16 patients, yielding a higher
detection rate than t-NGS-RNA, validating OGM findings and
offering additional insights into cases with IGH translocations.
Notably, RNAseq was the only technique that identified the
IGH::DUX4 (n= 2), IGH::CEBPE, and IGH::EPOR fusions, underscoring
the complexity of their detection (Fig. 3c). Furthermore, RNAseq
not only confirmed previously detected fusions but also allowed
the refinement of fusion breakpoints and validated some
alterations through expression levels (Table S4).

SNV/Indels
t-NGS. A total of 80 SNV/Indels were identified by t-NGS in 52/60
(86.7%) patients, with a median of 1.5 alterations per patient. The
majority of these variants were missense mutations, representing
62 out of 80 (77.5%) of the detected alterations (Fig. 4a). Genes
involved in the RAS signalling pathway were the most frequently
altered, with NRAS (23%), KRAS (21%), and FLT3 (13%) being the
most commonly affected (Fig. 4b). Notably, a substantial propor-
tion of these mutations were detected at subclonal levels,
suggesting the presence of multiple leukemic subpopulations
(Fig. 4c).

Association of genetic lesions with leukemia subtypes
The complete genetic landscape (detailed in Table S5) was
analysed collectively with demographic data, and the most
frequent events were summarised in Fig. 4d. A significant
association was observed between the co-mutation of IGHM and
ERG deletions, and DUX4 rearrangements (p= 0.012) (Fig. 2b),
suggesting a potential cooperative role in this leukemic subtype.
Interestingly, IGHM deletions as a single event showed a strong
correlation with Pre-B phenotype, whereas this alteration was
detected in only one patient with common B-cell phenotype (red
asterisk in Fig. 4d). JAK2 deletions were significantly enriched
within the PAX5-alterations subgroup (p= 0.016), while IKZF1
deletions and NRAS mutations were predominantly associated
with iAMP21 (p= 0.03) and BCR-ABL-like/JAK-STAT-activated cases
(p= 0.04), respectively (Fig. 4).

Diagnostic yield of emerging techniques
The diagnostic yield of each technique varied depending on the
type of genetic alteration analysed (Table 1). For chromosomal
gains and losses, OGM and dMLPA identified the highest number
of events (31/60, 51.7%), and the clinical utility was superior to the
standard-of-care approach (61.3% vs. 66.7%). The assessment of
CNA-UKALL showed full concordance between MLPA and dMLPA,
detecting alterations in nearly two-thirds of the cohort (38/60,
63.3%) with 100% clinical relevance, while OGM was slightly less
sensitive, detecting alterations in 36/60 (60%) patients. In contrast,
CNAs outside the UKALL-CNA risk panel were detected with
similar sensitivity by dMLPA and OGM (37-38/60), but only a small
fraction were clinically relevant (~5%) (Fig. 5a).
The most pronounced differences were observed in fusion

detection. Both the SoC methods and t-NGS identified fusions in
30% of patients (18/60), with clinical relevance rates of 72.2% and
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100%, respectively. In contrast, OGM and RNAseq detected fusions
in a significantly higher proportion of patients (56.7% and 80%,
p < 0.01), with clinical relevance rates of 76.5% and 81.3%. SNVs
and indels were exclusively detected by t-NGS (52/60), but none of
these were classified as clinically relevant under the criteria
applied (Fig. 5a).
The concordance analysis revealed notable differences among

some techniques. Of note, none of the described discrepancies
among methods could be attributed to a low blast percentage. For
chromosomal gains and losses, soc methods showed discrepan-
cies in 9/60 (15%) of patients, primarily due to non-informative
cases, whereas OGM and dMLPA exhibited complete concor-
dance. For the CNA-UKALL risk assessment, MLPA and dMLPA
were fully concordant, while OGM showed partial concordance in
1/60 (1.7%) of cases and discordance in 4/60 (6.7%) patients.
Regarding other CNAs, complete concordance was achieved in
60% of patients and partial concordance in 38.3%, mostly due to
non-covered regions by dMLPA. Discrepancies were observed in
only one case (1.7%), where dMLPA detected an ERG deletion
missed by OGM. For gene fusions, the highest concordance
(complete and partial) was observed between OGM and RNAseq,
with only 10% of patients showing discrepancies, mainly due to

missed IGH rearrangements by OGM. In contrast, the greatest
discordance was found between t-NGS-RNA and RNAseq, with
65% of patients being discordant, due to the differences in the
detection capabilities of these techniques (Fig. 5b).
The potential of emerging technologies to improve molecular

diagnosis and risk stratification was assessed against SoC methods
and various technical combinations commonly used in the clinical
setting. To minimise bias, cases with available RNAseq data were
analysed separately, ensuring a balanced evaluation of each
method’s contribution. OGM as a standalone test demonstrated
significantly higher performance in refining B-NOS and T-NOS
cases compared to SoC methods (25% vs. 40%, and 3.3% vs.
13.3%, p < 0.01) and tNGS (25% vs. 55%, p < 0.001) (Fig. 5c). OGM
also outperformed SoC methods in detecting PAX5 alterations (0%
vs. 10%, p < 0.01), and provided a more accurate diagnosis than
combined approaches, including SoC and t-NGS or dMLPA and
t-NGS (Fig. 6a). Additionally, RNAseq evaluation in 20/60 patients
showed a superior refinement of the B-NOS group compared to
OGM due to the identification of IGH rearrangements (Fig. 5d and
Fig. S2).
In terms of risk stratification, OGM and dMLPA with t-NGS

outperformed SoC methods with MLPA and SoC with MLPA and

Table 1. Comparison of diagnostic performance across different techniques.

Type of
alteration

Technique Detection rate
(n/N)

Detection rate
(%)

Clinically
relevant (n)

Non clinically
relevant (n)

Clinically
relevant (%)*

p-value

Chr Gains/
Losses

Standard-of-care 21/60 35 14 7 66.7 —

dMLPA 31/60 51.7 19 12 61.3 —

OGM 31/60 51.7 19 12 61.3 —

Standard-of-care
vs. dMLPA

21/60 vs. 31/60 35 vs. 51.7 14 vs. 19 7 vs. 12 66.7 vs. 61.3 0.0973

Standard-of-care
vs. OGM

21/60 vs. 31/60 35 vs. 51.7 14 vs. 19 7 vs. 12 66.7 vs. 61.3 0.0973

dMLPA vs. OGM 31/60 vs. 31/60 51.7 vs 51.7 19 vs. 19 12 vs. 12 61.3 vs. 61.3 1

CNA-UKALL MLPA 38/60 63.3 38 0 100 —

dMLPA 38/60 63.3 38 0 100 —

OGM 36/60 60 36 0 100 —

MLPA vs. dMLPA 38/60 vs. 38/60 63.3 vs. 63.3 38 vs. 38 0 vs. 0 100 vs. 100 1

MLPA vs. OGM 38/60 vs. 36/60 63.3 vs. 60 38 vs. 36 0 vs. 0 100 vs. 100 0.8510

dMLPA vs. OGM 38/60 vs. 36/60 63.3 vs. 60 38 vs. 36 0 vs. 0 100 vs. 100 0.8510

CNAs dMLPA 37/60 61.7 2 35 5.4 —

OGM 38/60 63.3 2 36 5.3 —

dMLPA vs. OGM 37/60 vs. 38/60 61.7 vs. 63.3 2 vs. 2 35 vs. 36 5.4 vs. 5.3 0.9999

Fusions# Standard-of-care 18/60 30 13 5 72.2 —

OGM 34/60 56.7 26 8 76.5 —

t-NGS 18/60 30 18 0 100 —

RNAseq 16/20 80 13 3 81.3 —

Standard-of-care
vs. OGM

18/60 vs. 34/60 30 vs. 56.7 13 vs. 26 5 vs. 8 72.2 vs. 76.5 0.0057

Standard-of-care
vs. t-NGS

18/60 vs. 18/60 30 vs. 30 13 vs. 13 5 vs. 0 72.2 vs. 100 1

Standard-of-care
vs. RNAseq

18/60 vs. 16/20 30 vs. 80 13 vs. 13 5 vs. 3 72.2 vs. 81.3 <0.0001

OGM vs. t-NGS 34/60 vs. 18/60 56.7 vs. 30 26 vs. 18 8 vs. 0 76.5 vs. 100 0.0057

OGM vs. RNAseq 34/60 vs. 16/20 56.7 vs 80 26 vs. 13 8 vs. 3 76.5 vs. 81.3 0.0107

t-NGS vs.
RNAseq

18/60 vs. 16/20 30 vs. 80 18 vs. 13 0 vs. 3 100 vs. 81.3 <0.0001

SNV/Indels t-NGS 52/60 86.7 0 52 0 1

*All alterations included in this analysis were confirmed as true positives. #RNAseq analysis was limited to the 20 cases for which this study was available.
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t-NGS combinations, especially in the good-risk genetic subgroup
(58% vs. 50%, p < 0.05) (Fig. 6b).
Overall, OGM and RNAseq outperformed SoC methods and

commonly used combinatorial approaches in identifying clinically
relevant biomarkers. Standard-of-care methods exhibited the low-
est detection rate, identifying biomarkers in only 28/60 patients
(46.7%), which increased to 36/60 (60%) when combined with
t-NGS. In contrast, RNAseq and OGM, as standalone methods,
detected biomarkers in 16/20 (80%) and 54/60 (90%) patients,
respectively. The combination of dMLPA and RNAseq demonstrated
the highest performance, identifying clinically relevant biomarkers
in 95% of cases. These findings underscore OGM as a powerful
standalone tool and highlight dMLPA combined with RNAseq or
OGM as the most promising approaches for clinical practice.

DISCUSSION
This study represents the largest cohort of pALL patients analysed
by OGM, compared with standard-of-care methods and emerging
techniques, performed at a single institution in a clinical
laboratory setting. While the analytical performance of these
techniques has been reported by different groups, this is the first
study to assess their diagnostic yield as individual methods and in
combination within the same cohort [14–16]. Our results support
the incorporation of OGM or the combination of dMLPA with
RNAseq into clinical practice, as these approaches significantly
increase the proportion of patients with clinically relevant markers
to 90–95%, compared to only 46.7% using standard-of-care
methods (Table 1). This improvement has direct clinical implica-
tions, as the refinement in diagnosis and/or risk stratification may
influence treatment decisions, including eligibility for targeted

therapies or enrolment in clinical trials, which could significantly
impact survival in these patients.
Cytogenetic analysis based on CBA has long been the gold

standard for detecting chromosomal gains and losses in pALL.
These alterations appear in up to 35–40% of cases, and are critical
for prognosis and treatment decisions [17]. Recent studies have
demonstrated the high resolution and sensitivity of novel
approaches like OGM and dMLPA, and our findings further
reinforce these observations, revealing a significant reduction in
non-informative cases and the reclassification of 8.3% of patients
only considering chromosomal gains and losses [18, 19].
Subchromosomal alterations have gained increasing recogni-

tion in recent years, particularly those included in the UKALL-CNA
risk profile, which has demonstrated prognostic significance and is
now mandatory for detection in clinical laboratories [20]. As CBA
has a limited resolution, MLPA is prompted as the gold standard to
identify these alterations. In agreement with Bédics et al. [21], our
data also support dMLPA as a feasible alternative for detecting
these alterations, demonstrating comparable results to MLPA,
which is expected given their shared methodological principles. In
contrast, OGM showed discordant results in 8.3% of cases,
primarily affecting the CDKN2A/B and PAR1 regions. A rational
explanation for these discrepancies could be the intrinsic
limitations of OGM in certain genomic regions [22]. Like
sequencing-based techniques, OGM exhibits reduced sensitivity
in low-coverage regions and highly repetitive sequences, such as
pseudoautosomal regions (PAR), which may compromise the
detection of specific CNAs [23]. Additionally, the limit of detection
for CNAs with OGM is another critical factor. Levy et al. reported
that a minimum coverage of 300× ensures a reliable limit of
detection of 10%–15% VAF; however, this threshold declines
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sharply in samples with lower coverage, further impacting
sensitivity. CNAs beyond the UKALL-CNA profile remain of limited
clinical significance. However, certain alterations like ERG deletions
are already integrated into the IKZF1plus risk profile and are used
by some groups for risk stratification [24, 25]. Additionally, we
identified recurrent VPREB1 deletions, an essential gene for
lymphoid development, whose loss may contribute to maturation
arrest at early stages (Fig. 2). Similarly, IGHM deletions may impair
the formation of a functional BCR, also leading to a developmental
block at the pre-B stage and potentially contributing to leukemic
transformation [26]. Interestingly, IGHM deletions as a single event

showed a strong correlation with Pre-B phenotype, while co-
mutation of IGHM and ERG correlated with IGH::DUX4 and
common B phenotype. These findings support the hypothesis
that IGHM deletions may, in some cases, act as surrogate markers
of IGH fusions and contribute to leukemogenesis by disrupting
early B-cell receptor formation and cooperating with transcrip-
tional programmes such as those driven by DUX4 [27]. Thus,
although most CNAs beyond the UKALL-CNA profile are not
currently considered clinically relevant, their identification may be
useful, as they could have future implications in pALL classification
and risk assessment.
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Fig. 6 Comparative evaluation of molecular diagnostic approaches in the cohort. a Sankey diagram showing the distribution and
reclassification of patients across four diagnostic strategies: standard-of-care, standard-of-care with t-NGS, dMLPA combined with t-NGS, and
OGM. Each vertical axis represents one diagnostic approach, while the coloured flows depict how individual patient classification shifts
among categories with each successive approach. b Risk stratification comparison across methodologies, showing the proportion of patients
classified into different genetic risk groups. The width of each node is proportional to the number of patients in each category.
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Structural variants giving rise to gene fusions are a hallmark in
pALL, and current diagnostic guidelines mandate the identifica-
tion of more than 10 recurrent rearrangements in clinical settings.
t-NGS emerged a decade ago as a more comprehensive
alternative to karyotype and FISH, and is now widely implemented
in clinical laboratories. However, only ~30% of fusions in pALL are
recurrent, posing a major challenge for t-NGS-RNA panels, which
are inherently limited to detecting known targets [28, 29]. This
limitation is evident in our results and those reported by others,
while all fusions detected by t-NGS-RNA in our cohort were
clinically relevant; the number of rearrangements identified by
OGM or RNAseq was significantly higher, underscoring the value
of unbiased genome-wide approaches in the molecular character-
isation of pALL [2, 30]. Moreover, a substantial number of pALL
subtypes are now defined by GEP rather than a single genetic
alteration. Given the pivotal role of these entities in patient
management and the increasing affordability of RNAseq, this
technology is emerging as the logical transition from t-NGS-RNA in
clinical practice. Another important challenge that could be
addressed is the identification of intricate fusions located in highly
repetitive or variable regions, such as IGH::DUX4 or IGH::CEBPE,
where most techniques often fail [31]. The ability to integrate
fusion calling with gene expression profiling enhances the
robustness for detecting these alterations. In fact, RNAseq was
the sole technique to identify four patients carrying IGH
rearrangements that were missed by any other method, further
supporting its role as a powerful tool in pALL molecular
diagnostics. Regarding OGM, it enables the detection of complex
structural variants that may not result in the formation of fusion
transcripts. This is particularly relevant in T-ALL, where non-
canonical or transcriptionally silent rearrangements could be
found in up to 60% of cases.
In contrast to adult ALL and other hematological neoplasms,

where diagnostic classifications, therapeutic protocols and clinical
trials increasingly incorporate the SNVs into clinical decision-
making, current treatment guidelines for pALL, such as ALLTo-
gether protocol, do not consider these alterations for therapeutic
stratification. Although some SNVs remain relevant for diagnostic
classification—particularly under the ICC 2022 framework—all of
these entities are also characterised by distinct transcriptional
signatures. Hence, the identification of the underlying point
mutation may not be essential when transcriptomic profiling is
available. Moreover, RNA-based approaches can also detect SNVs/
indels when sufficient read depth is achieved, further reducing the
need for separate targeted sequencing [32, 33]. In line with this,
our results show that while over 85% of patients harbour at least
one SNV/indel, the vast majority lack current clinical relevance in
the pediatric setting. Therefore, genomic approaches that focus
primarily on the detection of SNVs/indels, such as targeted NGS
panels, may have limited utility for the pALL clinical setting.
Despite the strengths of our study, including the comprehen-

sive genetic characterisation of pALL using multiple methodolo-
gies, some limitations should be acknowledged. As the study was
conducted at a single institution, the applicability of these findings
may vary across centres depending on local infrastructure and
expertise. Moreover, the cohort size is relatively modest, which
may limit the statistical power to detect associations involving rare
alterations or specific subtypes. Samples with low blast % may be
assumed to be misdiagnosed regardless of the method used.
However, a low blast count in pALL at diagnosis or relapse is
unusual. Regarding the potential misclassification of rare entities,
GEP has been demonstrated to accurately detect up to 21 B-ALL
subtypes [34] and 10 T-ALL classes [35], which grants rare entity
identification, especially in B-ALL. Intergenic fusions are frequent
in T-ALL, and these alterations have been broadly demonstrated
to be correctly detected by OGM. Therefore, the identification of
rare entities not included in our work should be correctly
identified by these technologies. Nonetheless, additional studies

are needed to validate our results and assess the feasibility of
implementing these strategies more broadly.

CONCLUSION
In summary, this study demonstrates the value of emerging
technologies to improve the molecular characterisation of
pediatric ALL. Large-scale multicenter studies have paved the
way for defining the molecular basis of this disease, providing
critical insights into its genetic landscape. However, it is essential
to translate this growing knowledge into accessible and feasible
diagnostic workflows that can be implemented in routine clinical
settings. This study validates novel techniques such as OGM,
evaluates their individual and combined performance, and
ultimately proposes a diagnostic strategy based either on OGM
as a standalone approach or on the combination of RNAseq with
dMLPA. Both strategies significantly increase the detection of
clinically relevant alterations and could streamline current
diagnostic algorithms by reducing the need for cascade testing,
which often leads to increased costs and prolonged turnaround
times that are not aligned with the demands of real-world
diagnostic laboratories. This technological adaptation would
ensure a more comprehensive diagnosis, facilitating treatment
decisions and, ultimately, improving patient outcomes.
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