Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Breast cancer cell-derived adrenomedullin confers cancer-associated adipose remodeling through the cAMP/Creb1/Zeb1 axis

Abstract

Background

Breast cancer cells that break through the basement membrane interact directly with neighboring adipocytes. Therefore, adipocytes adjacent to the invasive front of tumour undergo lipolysis and transform into cancer-associated adipocytes (CAAs), which is vital for the malignant progression of breast cancer. However, tumor-derived factors that trigger this process are still to be determined.

Methods

Transcriptome sequencing was used to identify the downstream transcription factor of adrenomedullin (AM). Tet-On system was used to construct the 3T3-L1 cell line with inducible overexpression of Zeb1. Adipocyte-specific knock-in Zeb1 transgenic mice (Zeb1adiTG) were used to construct an allograft tumor model.

Results

Breast cancer cell-derived AM downregulated the transcriptional expression of Zeb1 by triggering the cAMP/PKA/Creb1 pathway, thereby exerting lipolytic effects in CAAs. On the contrary, adipose tissue-specific upregulation of Zeb1 significantly attenuated AM-induced lipolytic phenotypes. Of note, we used the Zeb1adiTG mice to construct allograft tumor models. The results confirmed that breast cancer cell-derived AM conferred tumorigenicity in vivo, which effect was predominantly dependent on the aberrant expression of adipocyte-specific Zeb1.

Conclusions

These findings collectively suggested that breast cancer cell-derived AM promotes lipid metabolic reprogramming through a Zeb1-dependent manner in CAAs, which displays significant clinical implications and may provide promising therapeutic approaches for targeting the breast cancer-associated adipose microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Breast cancer cell-derived AM confers the lipolysis of adipocytes through a paracrine action.
Fig. 2: AM-mediated TAME remodelling leads to the malignant progression of breast cancer in vivo.
Fig. 3: AM regulates the lipid metabolic remodelling in a Zeb1-dependent action in adipocytes.
Fig. 4: AM acts on adipocytes by activating the cAMP/PKA/Creb1 pathway to trigger the downregulation of Zeb1 expression.
Fig. 5: Adipose tissue-specific upregulation of Zeb1 significantly attenuates AM-induced lipolytic phenotypes.
Fig. 6: Adipocyte-specific upregulation of Zeb1 expression attenuates the AM-induced malignant phenotypes of breast cancer.
Fig. 7: The expression of AM and Zeb1 is correlated in human breast cancer specimens.

Similar content being viewed by others

Data availability

The RNA-seq data generated in this study have been deposited in NCBI_SRA database under accession code PRJNA1297415 (https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA1297415). All the other data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Zhang, Y, Wu, M-J, Lu, W-C, Li, Y-C, Chang, CJ & Yang, J-Y Metabolic switch regulates lineage plasticity and induces synthetic lethality in triple-negative breast cancer. Cell Metab 2024;30.

  2. Brown KA, Scherer PE. Update on adipose tissue and cancer. Endocr Rev. 2023;44:961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang M, Tang C, Wang Z, Chen S, Zhang D, Li K, et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat Methods. 2024;21:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, et al. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer. 2024;23:261.

    Article  PubMed  PubMed Central  Google Scholar 

  6. His M, Gunter MJ, Keski-Rahkonen P, Rinaldi S. Application of metabolomics to epidemiologic studies of breast cancer: new perspectives for etiology and prevention. J Clin Oncol. 2024;42:103–15.

    Article  PubMed  Google Scholar 

  7. Xie Y, Wang B, Zhao Y, Tao Z, Wang Y, Chen G, et al. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. J Hematol Oncol. 2022;15:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y-Q, Sun F-Z, Li C-X, Mo H-N, Zhou Y-T, Lv D, et al. RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer. Mil Med Res. 2023;10:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dorado E, Doria ML, Nagelkerke A, McKenzie JS, Maneta-Stavrakaki S, Whittaker TE, et al. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J Extracell Vesic. 2024;13:e12419.

    Article  CAS  Google Scholar 

  10. Shubhra QTH. RARRES2’s impact on lipid metabolism in triple-negative breast cancer: a pathway to brain metastasis. Mil Med Res. 2023;10:42.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossi T, Zamponi R, Chirico M, Pisanu ME, Iorio E, Torricelli F, et al. BETi enhance ATGL expression and its lipase activity to exert their antitumoral effects in triple-negative breast cancer (TNBC) cells. J Exp Clin Cancer Res. 2023;42:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou C, He X, Tong C, Li H, Xie C, Wu Y, et al. Cancer-associated adipocytes promote the invasion and metastasis in breast cancer through LIF/CXCLs positive feedback loop. Int J Biol Sci. 2022;18:1363–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang R, Wang Z, Hong J, Wu J, Huang O, He J, et al. Targeting cancer-associated adipocyte-derived CXCL8 inhibits triple-negative breast cancer progression and enhances the efficacy of anti-PD-1 immunotherapy. Cell Death Dis. 2023;14:703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arora, GK, Gupta, A, Narayanan, S, Guo, T, Iyengar, P & Infante, RE Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight 2018;3.

  15. Kim S, Oh J, Park C, Kim M, Jo W, Kim C-S, et al. FAM3C in cancer-associated adipocytes promotes breast cancer cell survival and metastasis. Cancer Res. 2024;84:545–59.

    Article  CAS  PubMed  Google Scholar 

  16. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Q, Zhu Y, Hepler C, Zhang Q, Park J, Gliniak C, et al. Adipocyte mesenchymal transition contributes to mammary tumor progression. Cell Rep. 2022;40:111362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, et al. Retraction Note: Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 2023;22:24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao D, Wu K, Sharma S, Xing F, Wu S-Y, Tyagi A, et al. Exosomal miR-1304-3p promotes breast cancer progression in African Americans by activating cancer-associated adipocytes. Nat Commun. 2022;13:7734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pham D-V, Park P-H. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res. 2022;41:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, et al. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. Cancer Commun (Lond). 2022;42:848–67.

    Article  PubMed  Google Scholar 

  23. Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab. 2022;34:1675–99.

    Article  CAS  PubMed  Google Scholar 

  24. Mohammadi Ghahhari N, Sznurkowska MK, Hulo N, Bernasconi L, Aceto N, Picard D. Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat Commun. 2022;13:2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang M, Jike Y, Liu K, Gan F, Zhang K, Xie M, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol Cancer. 2023;22:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu R, Han C-F, Ni T, Di L, Liu L-J, Lv W-C, et al. A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial tumours. Nat Commun. 2019;10:3210.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu R, Lv W-C, Xu Y, Gong M-Y, Chen X-J, Jiang N, et al. Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun. 2020;11:460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu H, Zhao J, Li J, Zhu Z, Cui Z, Liu R, et al. Cancer associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Cell Death Dis. 2022;13:478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gubelmann C, Schwalie PC, Raghav SK, Röder E, Delessa T, Kiehlmann E, et al. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. Elife. 2014;3:e03346.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shi Y, Li F, Wang S, Wang C, Xie Y, Zhou J, et al. miR-196b-5p controls adipocyte differentiation and lipogenesis through regulating mTORC1 and TGF-β signaling. FASEB J. 2020;34:9207–22.

    Article  CAS  PubMed  Google Scholar 

  31. MartĂ­nez-Herrero, S & MartĂ­nez, A Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022;12.

  32. Bálint L, Nelson-Maney NP, Tian Y, Serafin SD, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res. 2023;132:1185–202.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang Q, Lee C-L, Yang T, Li J, Zeng Q, Liu X, et al. Adrenomedullin has a pivotal role in trophoblast differentiation: A promising nanotechnology-based therapeutic target for early-onset preeclampsia. Sci Adv. 2023;9:eadi4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karakas M, Akin I, Burdelski C, Clemmensen P, Grahn H, Jarczak D, et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, double-blinded, placebo-controlled, multicentre trial. Lancet Respir Med. 2022;10:247–54.

    Article  CAS  PubMed  Google Scholar 

  35. Voordes G, Davison B, Biegus J, Edwards C, Damman K, Ter Maaten J, et al. Biologically active adrenomedullin as a marker for residual congestion and early rehospitalization in patients hospitalized for acute heart failure: Data from STRONG-HF. Eur J Heart Fail. 2024;26:1480–92.

    Article  CAS  PubMed  Google Scholar 

  36. Chacron MJ. The role of ADM in brain function. Nat Comput Sci. 2022;2:628–9.

    Article  PubMed  Google Scholar 

  37. Oehler MK, Norbury C, Hague S, Rees MC, Bicknell R. Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. Oncogene. 2001;20:2937–45.

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka M, Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, et al. The endothelial adrenomedullin-RAMP2 system regulates vascular integrity and suppresses tumour metastasis. Cardiovasc Res. 2016;111:398–409.

    Article  CAS  PubMed  Google Scholar 

  39. Lv Y-P, Peng L-S, Wang Q-H, Chen N, Teng Y-S, Wang T-T, et al. Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis. 2018;9:1034.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65:1165–74.

    Article  CAS  PubMed  Google Scholar 

  41. Nakayama, A, Roquid, KA, Iring, A, Strilic, B, GĂĽnther, S, Chen, M, et al. Suppression of CCL2 angiocrine function by adrenomedullin promotes tumor growth. J Exp Med 2023;220.

  42. Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, et al. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res. 2022;41:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res. 2018;69:11–20.

    Article  CAS  PubMed  Google Scholar 

  44. Bouche C, Quail DF. Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res. 2023;83:1170–2.

    Article  CAS  PubMed  Google Scholar 

  45. Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, et al. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. Sci Adv. 2023;9:eadg1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, et al. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res. 2020;39:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao Y, Chen X, He Q, Gimple RC, Liao Y, Wang L, et al. Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of Resistin. Proc Natl Acad Sci USA. 2020;117:33295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai K, Tanaka M, Kamiyoshi A, Sakurai T, Ichikawa-Shindo Y, Kawate H, et al. Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene. 2020;39:1914–30.

    Article  CAS  PubMed  Google Scholar 

  49. Metellus P, Voutsinos-Porche B, Nanni-Metellus I, Colin C, Fina F, Berenguer C, et al. Adrenomedullin expression and regulation in human glioblastoma, cultured human glioblastoma cell lines and pilocytic astrocytoma. Eur J Cancer. 2011;47:1727–35.

    Article  CAS  PubMed  Google Scholar 

  50. Martínez A, Vos M, Guédez L, Kaur G, Chen Z, Garayoa M, et al. The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst. 2002;94:1226–37.

    Article  PubMed  Google Scholar 

  51. Larrue C, Guiraud N, Mouchel P-L, Dubois M, Farge T, Gotanègre M, et al. Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells. Nat Commun. 2021;12:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gyamfi J, Lee YH, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8:8859.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gyamfi J, Eom M, Koo JS, Choi J. Multifaceted Roles of Interleukin-6 in Adipocyte-Breast Cancer Cell Interaction. Transl Oncol. 2018;11:275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luis G, Godfroid A, Nishiumi S, Cimino J, Blacher S, Maquoi E, et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021;43:102006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the International Science and Technology Cooperation Project of China (No. 2022YFE0133300) and the National Natural Science Foundation of China (No. 82472870; No. 82172801).

Author information

Authors and Affiliations

Authors

Contributions

XC and LC contributed to conceptualisation, methodology, data curation, and writing—original draft. MF and QS performed visualisation, methodology, investigation, and formal analysis. MG, ZL, CQ, JS, and SZ carried out methodology and formal analysis. YL, TY, HH, YW, and YX contributed to methodology and conceptualisation. PS and YS conducted visualisation and validation. HW provided resources and funding acquisition. LL supervised the study, provided resources, secured funding, and participated in data curation, conceptualisation, and writing—review & editing. SY supervised the study, provided resources, project administration, and funding acquisition, and contributed to visualisation, methodology, formal analysis, data curation, conceptualisation, and writing—review & editing. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Hang Wang, Lei Liu or Shuang Yang.

Ethics declarations

Ethics Approval And Consent To Participate

The study was conformed to the principles of the Declaration of Helsinki, and all of the experimental procedures involving animals were performed in accordance with a protocol that was approved by the Ethics Committee for Animal Use at the Medical College of Nankai University (2022-SYDWLL-000096).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cao, L., Feng, M. et al. Breast cancer cell-derived adrenomedullin confers cancer-associated adipose remodeling through the cAMP/Creb1/Zeb1 axis. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03219-7

Search

Quick links