Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference

Abstract

The 11th International Oncolytic Virus Conference (IOVC) was held from April 9–12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development—from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell SJ, Federspiel MJ, Peng K-W, Tong C, Dingli D, Morice WG, et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc. 2014;89:926–33.

    Article  Google Scholar 

  2. Cheng X, Wang W, Xu Q, Harper J, Carroll D, Galinski MS, et al. Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol. 2016;90:5343–52.

    Article  CAS  Google Scholar 

  3. Muñoz-Alía MÁ, Muller CP, Russell SJ. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses. PLoS ONE. 2018;13:e0192245.

    Article  Google Scholar 

  4. Ammayappan A, Russell SJ, Federspiel MJ. Recombinant mumps virus as a cancer therapeutic agent. Mol Ther Oncolytics. 2016;3:16019.

    Article  CAS  Google Scholar 

  5. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170:1109.e10–19.e10.

    Article  Google Scholar 

  6. Streby KA, Geller JI, Currier MA, Warren PS, Racadio JM, Towbin AJ, et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin Cancer Res. 2017;23:3566–74.

    Article  CAS  Google Scholar 

  7. Rodríguez-García A, Giménez-Alejandre M, Rojas JJ, Moreno R, Bazan-Peregrino M, Cascalló M, et al. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res. 2015;21:1406–18.

    Article  Google Scholar 

  8. Zhang L, Steele MB, Jenks N, Grell J, Suksanpaisan L, Naik S, et al. Safety studies in tumor and non-tumor-bearing mice in support of clinical trials using oncolytic VSV-IFNβ-NIS. Hum Gene Ther Clin Dev. 2016;27:111–22.

    Article  CAS  Google Scholar 

  9. Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM, et al. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer. 2017;5:71.

    Article  Google Scholar 

  10. Koodie L, Eidenschink B, Sell J, LaRocca C, Jacobsen K, Ryvlin J, et al. Effect of adenoviral death protein on NIS-based iodine therapy and imaging for pancreatic cancer. Pancreatology. 2016;16:S54.

    Article  Google Scholar 

  11. Kim M, Nitschké M, Sennino B, Murer P, Schriver BJ, Bell A, et al. Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res. 2018;78:922–37.

    Article  CAS  Google Scholar 

  12. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253.e5–67.e5.

    Article  Google Scholar 

  13. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8:341ra75

    Article  Google Scholar 

  14. Mitchell LA, Lopez Espinoza F, Mendoza D, Kato Y, Inagaki A, Hiraoka K, et al. Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro Oncol. 2017;19:930–9.

    Article  CAS  Google Scholar 

  15. Yagiz K, Rodriguez-Aguirre ME, Lopez Espinoza F, Montellano TT, Mendoza D, Mitchell LA, et al. A retroviral replicating vector encoding cytosine deaminase and 5-FC induces immune memory in metastatic colorectal cancer models. Mol Ther Oncolytics. 2018;8:14–26.

    Article  CAS  Google Scholar 

  16. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36:1419–27.

    Article  CAS  Google Scholar 

  17. Adair RA, Roulstone V, Scott KJ, Morgan R, Nuovo GJ, Fuller M, et al. Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients. Sci Transl Med. 2012;4:138ra77.

    PubMed  PubMed Central  Google Scholar 

  18. Ilett E, Kottke T, Donnelly O, Thompson J, Willmon C, Diaz R, et al. Cytokine conditioning enhances systemic delivery and therapy of an oncolytic virus. Mol Ther. 2014;22:1851–63.

    Article  CAS  Google Scholar 

  19. Parrish C, Scott GB, Migneco G, Scott KJ, Steele LP, Ilett E, et al. Oncolytic reovirus enhances rituximab-mediated antibody-dependent cellular cytotoxicity against chronic lymphocytic leukaemia. Leukemia. 2015;29:1799–810.

    Article  CAS  Google Scholar 

  20. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520:353–7.

    Article  CAS  Google Scholar 

  21. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47:367–72.

    Article  CAS  Google Scholar 

  22. Speck T, Heidbuechel JPW, Veinalde R, Jaeger D, von Kalle C, Ball CR, et al. Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res. 2018;24:2128–37.

    Article  CAS  Google Scholar 

  23. Tan G, Kasuya H, Sahin TT, Yamamura K, Wu Z, Koide Y, et al. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer. 2015;136:1718–30.

    Article  CAS  Google Scholar 

  24. Eissa IR, Naoe Y, Bustos-Villalobos I, Ichinose T, Tanaka M, Zhiwen W, et al. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol. 2017;7:149.

    Article  Google Scholar 

  25. Yoshihiro H, Kasuya H, Bustos-Villalobos I, Naoe Y, Ichinose T, Tanaka M, et al. Curative effect of HF10 on liver and peritoneal metastasis mediated by host antitumor immunity. Oncolytic Virother. 2017;6:31–8.

    Article  Google Scholar 

  26. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 2016;76:6747–59.

    Article  CAS  Google Scholar 

  27. Ahn J, Konno H, Barber GN. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene. 2015;34:5302–8.

    Article  CAS  Google Scholar 

  28. Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14:282–97.

    Article  CAS  Google Scholar 

  29. Ahn J, Son S, Oliveira SC, Barber GN. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 2017;21:3873–84.

    Article  CAS  Google Scholar 

  30. Dai P, Wang W, Yang N, Serna-Tamayo C, Ricca JM, Zamarin D, et al. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci Immunol. 2017;2:eaal1713.

    Article  Google Scholar 

  31. Denton N, Chen C-Y, Scott T, Cripe T. Tumor-associated macrophages in oncolytic virotherapy: friend or foe? Biomedicines. 2016;4:13.

    Article  Google Scholar 

  32. Bottermann M, James LC. Intracellular antiviral immunity. Adv Virus Res. 2018;100:309–54.

    Article  Google Scholar 

  33. Watkinson RE, McEwan WA, Tam JCH, Vaysburd M, James LC. TRIM21 promotes cGAS and RIG-I sensing of viral genomes during infection by antibody-opsonized virus. PLoS Pathog. 2015;11:e1005253.

    Article  Google Scholar 

  34. Dickson C, Fletcher AJ, Vaysburd M, Yang J-C, Mallery DL, Zeng J, et al. Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. Elife. 2018;7:e32660

    Article  Google Scholar 

  35. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol. 2016;82:5039–48.

    Article  CAS  Google Scholar 

  36. Flores Bueso Y, Lehouritis P, Tangney M. In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J Control Release. 2018;275:217–28.

    Article  CAS  Google Scholar 

  37. Jiang S-N, Park S-H, Lee HJ, Zheng JH, Kim H-S, Bom H-S, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther. 2013;21:1985–95.

    Article  CAS  Google Scholar 

  38. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol. 2016;2016:1–14.

    Article  Google Scholar 

  39. Felgner S, Kocijancic D, Pawar V, Weiss S. Biomimetic Salmonella: a next-generation therapeutic vector? Trends Microbiol. 2016;24:850–2.

    Article  CAS  Google Scholar 

  40. Kocijancic D, Leschner S, Felgner S, Komoll R-M, Frahm M, Pawar V, et al. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget. 2017;8:36492–508.

    PubMed  PubMed Central  Google Scholar 

  41. Felgner S, Pawar V, Kocijancic D, Erhardt M, Weiss S. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb Biotechnol. 2017;10:1074–8.

    Article  Google Scholar 

  42. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology. 2018;7:e1382791.

    Article  Google Scholar 

  43. Vincent D, Kramberger P, Hudej R, Štrancar A, Wang Y, Zhou Y, et al. The development of a monolith-based purification process for Orthopoxvirus vaccinia virus Lister strain. J Chromatogr A. 2017;1524:87–100.

    Article  CAS  Google Scholar 

  44. Yuan M, Webb E, Lemoine N, Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses. 2016;8:72.

    Article  Google Scholar 

  45. Dyer A, Di Y, Calderon H, Illingworth S, Kueberuwa G, Tedcastle A, et al. Oncolytic group B adenovirus enadenotucirev mediates non-apoptotic cell death with membrane disruption and release of inflammatory mediators. Mol Ther Oncolytics. 2017;4:18–30.

    Article  CAS  Google Scholar 

  46. Rajani K, Shim KG, Kazemi NY, Gendron W, Kottke T, Molan A, et al. 64. Generation of tumor cells resistant to oncolysis is mediated through virus induced APOBEC expression. Mol Ther. 2016;24:S28.

    Article  Google Scholar 

  47. Colbeck EJ, Jones E, Hindley JP, Smart K, Schulz R, Browne M, et al. Treg depletion licenses T cell–driven HEV neogenesis and promotes tumor destruction. Cancer Immunol Res. 2017;5:1005–15.

    Article  CAS  Google Scholar 

  48. Eriksson E, Milenova I, Wenthe J, Ståhle M, Leja-Jarblad J, Ullenhag G, et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017;23:5846–57.

    Article  CAS  Google Scholar 

  49. Wing A, Fajardo CA, Posey AD, Shaw C, Da T, Young RM, et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol Res. 2018;6:605–16.

    Article  CAS  Google Scholar 

  50. Oh E, Choi I-K, Hong J, Yun C-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget. 2017;8:4730–46.

    PubMed  Google Scholar 

  51. Ahn HM, Hong JW, Yun C-O. Oncolytic adenovirus coexpressing interleukin-12 and shVEGF restores antitumor immune function and enhances antitumor efficacy. Oncotarget. 2016;7:84965–80.

    PubMed  PubMed Central  Google Scholar 

  52. Freedman JD, Hagel J, Scott EM, Psallidas I, Gupta A, Spiers L, et al. Oncolytic adenovirus expressing bispecific antibody targets T‐cell cytotoxicity in cancer biopsies. EMBO Mol Med. 2017;9:1067–87.

    Article  CAS  Google Scholar 

  53. Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, et al. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin Cancer Res. 2017;23:5696–702.

    Article  CAS  Google Scholar 

  54. Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, Szalay AA. Humanized mice with subcutaneous human solid tumors for immune response analysis of vaccinia virus-mediated oncolysis. Mol Ther Oncolytics. 2017;5:41–61.

    Article  CAS  Google Scholar 

  55. Lilly CL, Villa NY, Lemos de Matos A, Ali HM, Dhillon J-KS, Hofland T, et al. Ex vivo oncolytic virotherapy with myxoma virus arms multiple allogeneic bone marrow transplant leukocytes to enhance graft versus tumor. Mol Ther Oncolytics. 2017;4:31–40.

    Article  CAS  Google Scholar 

  56. AL-Janabi H, Conner J, Taher Z, Staniland S, Muthana M. Breast cancer immunotherapy using magnetised oncolytic viruses. Eur J Cancer. 2018;92:S4.

    Article  Google Scholar 

  57. Myers R, Coviello C, Erbs P, Foloppe J, Rowe C, Kwan J, et al. Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol Ther. 2016;24:1627–33.

    Article  CAS  Google Scholar 

  58. Kwan JJ, Myers R, Coviello CM, Graham SM, Shah AR, Stride E, et al. Ultrasound-propelled nanocups for drug delivery. Small. 2015;11:5305–14.

    Article  CAS  Google Scholar 

  59. Myers R, Grundy M, Rowe C, Coviello C, Bau L, Erbs P, et al. Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. Int J Nanomed. 2018;ume 13:337–49.

    Article  Google Scholar 

  60. Hiraoka K, Inagaki A, Kato Y, Huang TT, Mitchell LA, Kamijima S, et al. Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro Oncol. 2017;19:918–29.

    Article  CAS  Google Scholar 

  61. Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J. 2015;12:6.

    Article  Google Scholar 

  62. Del Papa J, Parks RJ. Adenoviral vectors armed with cell fusion-inducing proteins as anti-cancer agents. Viruses. 2017;9:13

    Article  Google Scholar 

  63. Wilkinson MJ, Smith HG, Pencavel TD, Mansfield DC, Kyula-Currie J, Khan AA, et al. Isolated limb perfusion with biochemotherapy and oncolytic virotherapy combines with radiotherapy and surgery to overcome treatment resistance in an animal model of extremity soft tissue sarcoma. Int J Cancer. 2016;139:1414–22.

    Article  CAS  Google Scholar 

  64. Wilkinson MJ, Smith HG, McEntee G, Kyula-Currie J, Pencavel TD, Mansfield DC, et al. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget. 2016;7:81208–22.

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to our sponsors: PsiOxus Therapeutics, Amgen, Oxford Genetics, Sartorius Stedim Biotech, Sillajen, the American Society Gene and Cell Therapy, Cancer Research UK, Replimune, StemImmune, Turnstone Biologics, Vyriad, AstraZeneca, Ignite Immunotherapy, Novasep, Tocagen, The Brain Tumour Charity, Cancer Research UK Oxford Centre, Imanis Life Science, MedImmune, Merck, Viralytics, DNAtrix, and VCN Biosciences. Sponsors played no role in programme design or abstract selection. All decisions were made by the IOVC organising committee.

Funding

The authors are supported by Cancer Research UK grant C552/A17720, Newton-Ungku Omar Fund grant MR/P012795/1, the Engineering and Physical Science Research Council (EPSRC) Doctoral Training Centre in Synthetic Biology, Medical Research Council (MRC) Doctoral Training Partnership, The Brain Tumour Charity, Oxford Institute of Radiation Oncology and Linacre College, Oxford.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Len W. Seymour or Janet Lei.

Ethics declarations

Conflict of interest

LWS holds equity in PsiOxus Therapeutics Ltd. All the other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyer, A., Baugh, R., Chia, S.L. et al. Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference. Cancer Gene Ther 26, 59–73 (2019). https://doi.org/10.1038/s41417-018-0042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-018-0042-1

This article is cited by

Search

Quick links