Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression pattern of m6A regulators is significantly correlated with malignancy and antitumor immune response of breast cancer

Abstract

More than 24 regulators have been revealed to dynamically participant in N6-methyladenosine (m6A) RNA methylation, and play critical roles in tumorigenesis and development of cancers. However, their functional roles have not been comprehensively clarified in breast cancer. Here we systematically analyzed the RNA sequencing data of 24 main m6A RNA methylation regulators in 775 breast cancer patients from The Cancer Genome Atlas dataset. Consensus clustering of the 24 m6A regulators was carried out and identified two patient subgroups, RNA methylation 1/2 (RM1/2). RM1 demonstrated generally lower RNA methylation modification than that of RM2, and had significantly shorter overall survival. The hallmarks of PI3K/AKT signaling in cancer, KRAS signaling and angiogenesis were significantly enriched in RM1. Moreover, the association between m6A regulators and antitumor immune response was also investigated in this study and revealed that RM2 was associated with significantly higher expressions of HLA-A, higher numbers of tumor-infiltrating CD8+ T cells, helper T cells and activated NK cells, but lower expressions of PD-L1, PD-L2, TIM3, and CCR4 than RM1. In conclusion, the expression pattern of m6A regulators was significantly correlated with the malignancy, prognosis and antitumor immune response in breast cancer, which might serve as potential targets and biomarkers for immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression pattern of m6A regulators in breast cancer across different clinicopathological features.
Fig. 2: Differential overall survivals of breast cancer patients in RM1/2 subgroups.
Fig. 3: Functional annotation of differentially expressed genes in RM1/2 subgroups.
Fig. 4: Immune cell infiltration, expressions of antigen presenting genes, and immunomodulator genes in RM1/2 subgroups.

Similar content being viewed by others

References

  1. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–50.

    Article  Google Scholar 

  2. Ponde NF, Zardavas D, Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 2019;16(1):27–44.

    Article  CAS  Google Scholar 

  3. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86.

    Article  Google Scholar 

  4. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–86.

    Article  CAS  Google Scholar 

  5. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.

    Article  Google Scholar 

  6. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 2016;61(4):507–19.

    Article  CAS  Google Scholar 

  7. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.

    Article  Google Scholar 

  8. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161(6):1388–99.

    Article  CAS  Google Scholar 

  9. Vu LP, Cheng Y, Kharas MG. The biology of m(6)A RNA methylation in normal and malignant hematopoiesis. Cancer Discov. 2019;9(1):25–33.

    Article  CAS  Google Scholar 

  10. Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, et al. Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types. Mol Cancer. 2019;18(1):137.

    Article  Google Scholar 

  11. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.

    Article  Google Scholar 

  12. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69:1193–205.

    Article  CAS  Google Scholar 

  13. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31(1):127–41.

    Article  Google Scholar 

  14. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.

    Article  CAS  Google Scholar 

  15. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591–606.

    Article  CAS  Google Scholar 

  16. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–34.

    Article  CAS  Google Scholar 

  17. Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18(1):127.

    Article  Google Scholar 

  18. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.

    Article  CAS  Google Scholar 

  19. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–19.

    Article  CAS  Google Scholar 

  20. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol cell. 2019;74(4):640–50.

    Article  CAS  Google Scholar 

  21. Yang Y, Hsu PJ, Chen Y-S, Yang Y-G. Dynamic transcriptomic mA decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616–24.

    Article  CAS  Google Scholar 

  22. Meyer KD, Jaffrey SR. Rethinking mA readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017;33:319–42.

    Article  CAS  Google Scholar 

  23. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19.

    Article  CAS  Google Scholar 

  24. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

    Article  CAS  Google Scholar 

  25. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.

    Article  CAS  Google Scholar 

  26. Nachtergaele S, He C. Chemical modifications in the life of an mRNA transcript. Annu Rev Genet. 2018;52:349–72.

    Article  CAS  Google Scholar 

  27. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149(7):1635–46.

    Article  CAS  Google Scholar 

  28. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.

    Article  CAS  Google Scholar 

  29. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–200.

    Article  CAS  Google Scholar 

  30. Hsu PJ, Shi H, He C. Epitranscriptomic influences on development and disease. Genome Biol. 2017;18(1):197.

    Article  Google Scholar 

  31. Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79(7):1285–92.

    Article  CAS  Google Scholar 

  32. Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, et al. Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci Adv. 2018;4:eaar8263. https://doi.org/10.1126/sciadv.aar8263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai RC, Wu F, Wang QX, Zhang S, Zhang KN, Liu YQ, et al. m(6)A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas. Aging (Albany NY). 2019;11(4):1204–25.

    Article  CAS  Google Scholar 

  34. Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, et al. Consensus clustering and functional interpretation of gene-expression data. Genome Biol. 2004;5(11):R94.

    Article  Google Scholar 

  35. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering—a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn. 2003;52(1-2):91–118.

    Article  Google Scholar 

  36. Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 2019;722:144076.

    Article  Google Scholar 

  37. Wu L, Wu D, Ning J, Liu W, Zhang D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 2019;19(1):326.

    Article  Google Scholar 

  38. Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019;18(1):46.

    Article  Google Scholar 

  39. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.

    Article  CAS  Google Scholar 

  40. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, et al. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun. 2019;10(1):1898.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Jean J. Zhao (Dana Farber Cancer Institute, Boston, Massachusetts, USA) for her suggestion in revising the paper, and the contributions from TCGA, TCIA, and CIBERSORT networks.

Funding

This work was supported by National Natural Science Foundation of China (81201747), Natural Science Foundation of Guangdong Province, China (S2012040006323, 2014A030313023), and the open Foundation of State Key Laboratory of Oncology in South China (HN2013-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Tan, L., Ni, J. et al. Expression pattern of m6A regulators is significantly correlated with malignancy and antitumor immune response of breast cancer. Cancer Gene Ther 28, 188–196 (2021). https://doi.org/10.1038/s41417-020-00208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-020-00208-1

This article is cited by

Search

Quick links