Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switching anti-EGFR antibody re-sensitizes head and neck cancer patient following acquired resistance to cetuximab

Abstract

Cetuximab induces responses in about 13% of head and neck squamous cell carcinomas (HNSCC). We describe the molecular mechanism of acquired resistance to cetuximab, which could be overcome by switching to a different anti-EGFR antibody. Biopsies were collected at three different time points: before the start of cetuximab (PRE-cetux), at acquired resistance to cetuximab (AR-cetux), and at acquired resistance to duligotuzumab (AR-duligo). Biopsies were analyzed using tumor and normal whole-exome sequencing, RNASeq, and targeted panel sequencing with ultra-deep coverage to generate differential mutation and expression profiles. WES and targeted sequencing analysis identified an EGFR p.G465R extracellular domain mutation in AR-cetux biopsy. Furthermore, RNASeq confirmed the expression of this mutation in the tumor tissue. This mutation prevented the binding of cetuximab to EGFR and was not present in PRE-cetux and AR-duligo biopsies, suggesting a potential mechanism of acquired resistance to cetuximab. Molecular dynamic simulations confirmed that duligotuzumab effectively binds EGFR with a p.G465R mutation. Interestingly, the p.G465R mutation improved the stability of the duligotuzumab-EGFR complex as compared to the wild-type EGFR. This is the first report of an EGFR ECD mutation associated with acquired resistance to cetuximab, posing a need for further validation. We suggest appropriate serial mutational profiling to identify ECD mutations should be considered for select patients with initial cetuximab benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of patient and timeline of treatment and biopsies.
Fig. 2: Next-generation sequencing data of the biopsies.
Fig. 3: Molecular dynamic simulations of wild-type and p.G465R mutated EGFR.
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes used in different analyses in this study are available from the corresponding authors upon request.

References

  1. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived With disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncol. 2017;3:524.

    Article  PubMed  Google Scholar 

  2. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  3. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53:3579–84.

    CAS  PubMed  Google Scholar 

  5. Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol. 2005;124:71–6.

    Article  CAS  PubMed  Google Scholar 

  6. Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. 2015;21:870–81.

    Article  CAS  PubMed  Google Scholar 

  7. Vokes EE, Seiwert TY. EGFR-directed treatments in SCCHN. Lancet Oncol. 2013;14:672–3.

    Article  PubMed  Google Scholar 

  8. Cassell A, Grandis JR. Investigational EGFR-targeted therapy in head and neck squamous cell carcinoma. Expert Opin Investig Drugs. 2010;19:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peeters M, Price T, Van Laethem JL. Anti–epidermal growth factor receptor monotherapy in the treatment of metastatic colorectal cancer: where are we today? Oncologist. 2009;14:29–39.

    Article  CAS  PubMed  Google Scholar 

  10. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  PubMed  Google Scholar 

  11. Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck Squamous Cell Carcinomas. Clin Cancer Res. 2015;21:632–41.

    Article  CAS  PubMed  Google Scholar 

  12. Fayette J, Wirth L, Oprean C, Udrea A, Jimeno A, Rischin D, et al. Randomized Phase II Study of Duligotuzumab (MEHD7945A) vs. Cetuximab in Squamous Cell Carcinoma of the Head and Neck (MEHGAN Study). Front Oncol. 2016;6:232.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mekata E, Endo Y, Sonoda H, Shimizu T, Kawai Y, Umeda T, et al. Cetuximab as salvage monotherapy in chemotherapy-refractory metastatic colorectal cancer: a single-center report. Oncol Lett. 2013;6:1011–4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Zheng M, Nie D, Xu L, Tian H, Wang M, et al. Efficacy of cetuximab plus PD-1 inhibitor differs by HPV status in head and neck squamous cell carcinoma: a systematic review and meta-analysis. J Immunother Cancer. 2022;10:e005158.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jelinek MJ, Vokes EE. Epidermal Growth Factor Receptor Blockade in Head and Neck Cancer: What Remains? [Internet]. 2019. Available from: https://doi.org/10.1200/JCO.19.01981.

  16. Endhardt KU, Khattri A, Keck M, Braegelmann J, Mahmutoglu D, Leung K, et al. Abstract 5472: Role of Harvey Ras (HRAS) mutations in head and neck squamous cell carcinoma (HNSCC). Cancer Res. 2012;72:5472–5472.

    Article  Google Scholar 

  17. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz Jr, Williams LA, Wu RT, Kinde J, Hecht JR I, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.

    Article  PubMed  Google Scholar 

  19. Misale S, Arena S, Lamba S, Siravegna G, Lallo A, Hobor S, et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med. 2014;6:224ra26.

    Article  PubMed  Google Scholar 

  20. Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med. 2011;3:99ra86.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET Receptor Drives Resistance to Anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabinowits G, Haddad RI. Overcoming resistance to EGFR inhibitor in head and neck cancer: A review of the literature. Oral Oncol. 2012;48:1085–9.

    Article  CAS  PubMed  Google Scholar 

  23. Xia W, Lau YK, Zhang HZ, Xiao FY, Johnston DA, Liu AR, et al. Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res. 1999;5:4164–74.

    CAS  PubMed  Google Scholar 

  24. Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 2015;526:263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

  26. Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. 2019;10:540.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Edge SB. American Joint Committee on Cancer. AJCC cancer staging manual. 650 p.

  28. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinforma. 2017;18:80.

    Article  Google Scholar 

  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  Google Scholar 

  31. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164–e164.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell. 2011;20:472–86.

    Article  CAS  PubMed  Google Scholar 

  34. DeLano WL. PyMOL Molecular Graphics System. 2010.

  35. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

    Article  Google Scholar 

  36. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40:843–56.

    Article  CAS  PubMed  Google Scholar 

  37. Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–60.

    Article  CAS  Google Scholar 

  38. Bixon M, Lifson S. Potential functions and conformations in cycloalkanes. Tetrahedron. 1967;23:769–84.

    Article  CAS  Google Scholar 

  39. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.

    Article  PubMed  Google Scholar 

  40. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–90.

    Article  CAS  Google Scholar 

  41. Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.

    Article  CAS  Google Scholar 

  42. Cuendet MA, van Gunsteren WF. On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. J Chem Phys. 2007;127:184102.

    Article  PubMed  Google Scholar 

  43. Kumari R, Kumar R, Lynn A. g_mmpbsa —A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–62.

    Article  CAS  PubMed  Google Scholar 

  44. Arena S, Bellosillo B, Siravegna G, Martínez A, Cañadas I, Lazzari L, et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin Cancer Res. 2015;21:2157–66.

    Article  CAS  PubMed  Google Scholar 

  45. Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.

    Article  CAS  PubMed  Google Scholar 

  46. Hah JH, Zhao M, Pickering CR, Frederick MJ, Andrews GA, Jasser SA, et al. HRAS mutations and resistance to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in head and neck squamous cell carcinoma cells. Head Neck. 2014;36:1547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khattri A, Zuo Z, Brägelmann J, Keck MK, El Dinali M, Brown CD, et al. Rare occurrence of EGFRvIII deletion in head and neck squamous cell carcinoma. Oral Oncol. 2015;51:53–8.

    Article  CAS  PubMed  Google Scholar 

  48. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sánchez-Martín FJ, Bellosillo B, Gelabert-Baldrich M, Dalmases A, Cañadas I, Vidal J, et al. The First-in-class Anti-EGFR antibody mixture Sym004 overcomes cetuximab resistance mediated by EGFR extracellular domain mutations in colorectal cancer. Clin Cancer Res. 2016;22:3260–7.

    Article  PubMed  Google Scholar 

  50. Arena S, Siravegna G, Mussolin B, Kearns JD, Wolf BB, & Misale S, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med. 2016;8.

  51. Iida M, Brand TM, Starr MM, Li C, Huppert EJ, Luthar N, et al. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab. Neoplasia. 2013;15:1196–206.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Montagut C, Argilés G, Ciardiello F, Poulsen TT, Dienstmann R, Kragh M, et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses. JAMA Oncol. 2018;4:e175245.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front Oncol. 2020;10:212.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AK: Conceptualization, literature survey, data collection, study design, interpretation of data, writing—review and editing. SN: Next-generation sequencing data analysis, writing, and editing. NA: Molecular Dynamics simulations and writing. S Kaushik: Molecular Dynamics simulations, and writing. S Kochanny: Clinical data collection, review, writing, and editing. DG: Clinical data collection, review, and editing. MWG: Review of patient biopsies, review, and editing. EB: Review and editing. TYS: Conceptualization, study design, interpretation of data, and writing—review and editing.

Corresponding authors

Correspondence to Arun Khattri or Tanguy Y. Seiwert.

Ethics declarations

Competing interests

Arun Khattri received the financial support from the Department of Biotechnology, Government of India, in the form of Ramalingaswami Fellowship. The funding agency played no role in the study design, analysis, and interpretation of the results. Tanguy Y. Seiwert reports institutional research funding from Regeneron, Merck/MSD, BMS, Genentech, Cue Biopharma, Nanobiotix, Seattle Genetics, Exelixis, Astra Zeneca, IOBiotech, and Kura Oncology; and advisory board and consulting fees from Regeneron, Merck/MSD, Arcus, Astra Zeneca, Regeneron, IOBiotech, Seattle Genetics, Surface Oncology, Sanofi, iTeos, Innate Pharma, EMD Serono, Exelixis, Vir Therapeutics, and Eisei. He is on the DSMB for BioNTech, and the steering committee for IOBiotech.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattri, A., Sheikh, N., Agrawal, N. et al. Switching anti-EGFR antibody re-sensitizes head and neck cancer patient following acquired resistance to cetuximab. Cancer Gene Ther 31, 1477–1485 (2024). https://doi.org/10.1038/s41417-024-00812-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00812-5

This article is cited by

Search

Quick links