Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC

Abstract

Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differentiation of colorectal CSCs from hiPSCs.
Fig. 2: The in vivo tumorigenic ability of hiPSC-derived colorectal CSCs.
Fig. 3: The migration ability of hiPSC-derived colorectal CSCs in vitro and in vivo.
Fig. 4: Angiogenic properties of hiPSC-derived colorectal CSCs in vitro and in vivo.
Fig. 5: Upregulation of C-MYC was found in hiPSC-derived colorectal CSCs.
Fig. 6: Epigenetic regulation of the promoters of Yamanaka factors in hiPSC-derived colorectal CSCs.
Fig. 7: Inhibition of CBP attenuates the stemness of hiPSC-derived colorectal CSCs.

Similar content being viewed by others

Data availability

The data presented in this study were generated by the authors and included in the article.

References

  1. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73:233–54.

    Article  PubMed  Google Scholar 

  2. Pretzsch E, Bosch F, Neumann J, Ganschow P, Bazhin A, Guba M, et al. Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. J Oncol. 2019;2019:7407190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Price TJ. Advanced colorectal cancer treatment options beyond standard systemic therapy. Lancet Oncol. 2017;18:157–9.

    Article  PubMed  Google Scholar 

  5. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N. Engl J Med. 2005;352:476–87.

    Article  CAS  PubMed  Google Scholar 

  6. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  7. Hayat H, Dwan BF, Gudi M, Bishop JO, Wang P. A Concise Review: The Role of Stem Cells in Cancer Progression and Therapy. OncoTargets Ther. 2021;14:2761–72.

    Article  Google Scholar 

  8. Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, et al. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol. 2020;235:790–803.

    Article  CAS  PubMed  Google Scholar 

  9. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71:110–6.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther. 2021;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frank MH, Wilson BJ, Gold JS, Frank NY. Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology. 2021;160:1947–60.

    Article  CAS  PubMed  Google Scholar 

  12. Huang JL, Oshi M, Endo I, Takabe K. Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am J Cancer Res. 2021;11:5141–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 2018;71:88–91.

    Article  PubMed  Google Scholar 

  14. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez F, Boue S, Belmonte Izpisua. JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12:231–42.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell. 2020;26:309–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen L, Kasai T, Li Y, Sugii Y, Jin G, Okada M, et al. A model of cancer stem cells derived from mouse induced pluripotent stem cells. PloS One. 2012;7:e33544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan T, Mizutani A, Chen L, Takaki M, Hiramoto Y, Matsuda S, et al. Characterization of cancer stem-like cells derived from mouse induced pluripotent stem cells transformed by tumor-derived extracellular vesicles. J Cancer. 2014;5:572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaheen S, Ahmed M, Lorenzi F, Nateri AS. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev Rep. 2016;12:492–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur M, Velmurugan B, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia. 2010;12:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu S, Qiu Y, Shao Y, Yin S, Wang R, Pang X, et al. Lycorine Displays Potent Antitumor Efficacy in Colon Carcinoma by Targeting STAT3. Front Pharm. 2018;9:881.

    Article  Google Scholar 

  22. Yang M, Liu X, Meng F, Zhang Y, Wang M, Chen Y, et al. The rs7911488-T allele promotes the growth and metastasis of colorectal cancer through modulating miR-1307/PRRX1. Cell Death Dis. 2020;11:651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107:3722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong B, Ma L, Hu X, Zhang C, Cheng Y. Characterization of side population cells isolated from the colon cancer cell line SW480. Int J Oncol. 2014;45:1175–83.

    Article  CAS  PubMed  Google Scholar 

  25. Ribatti D, Tamma R, Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol. 2020;13:100773.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  27. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lizarraga-Verdugo E, Avendano-Felix M, Bermudez M, Ramos-Payan R, Perez-Plasencia C, Aguilar-Medina M. Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Front Oncol. 2020;10:413.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Llombart V, Mansour MR. Therapeutic targeting of “undruggable” MYC. EBioMedicine. 2022;75:103756.

    Article  CAS  PubMed  Google Scholar 

  32. Fatma H, Maurya SK, Siddique HR. Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol. 2022;83:166–76.

    Article  CAS  PubMed  Google Scholar 

  33. Vervoorts J, Luscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K, et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 2003;4:484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eberhardy SR, D’Cunha CA, Farnham PJ. Direct examination of histone acetylation on Myc target genes using chromatin immunoprecipitation. J Biol Chem. 2000;275:33798–805.

    Article  CAS  PubMed  Google Scholar 

  35. Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol. 2012;198:281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, et al. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol. 2020;11:1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeung TM, Chia LA, Kosinski CM, Kuo CJ. Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci : CMLS. 2011;68:2513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal : CCS. 2020;18:59.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bloom AB, Zaman MH. Influence of the microenvironment on cell fate determination and migration. Physiol Genom. 2014;46:309–14.

    Article  CAS  Google Scholar 

  41. Fujimori H, Shikanai M, Teraoka H, Masutani M, Yoshioka K. Induction of cancerous stem cells during embryonic stem cell differentiation. J Biol Chem. 2012;287:36777–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Puri MC, Nagy A. Concise review: Embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30:10–4.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Res. 2009;104:e30–41.

    Article  CAS  PubMed  Google Scholar 

  44. Williams IM, Wu JC. Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, Thrombosis, Vasc Biol. 2019;39:1317–29.

    Article  CAS  Google Scholar 

  45. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 2010;107:4335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gurevich I, Burton SA, Munn C, Ohshima M, Goedland ME, Czysz K, et al. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open 2020;9:bio055087.

  47. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28:1568–70.

    Article  PubMed  Google Scholar 

  48. Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS. Induced pluripotency and oncogenic transformation are related processes. Stem cells Dev. 2013;22:37–50.

    Article  CAS  PubMed  Google Scholar 

  49. Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med. 2016;22:1392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem cell Rev Rep. 2020;16:1049–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell. 2013;152:1324–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nashun B, Hill PW, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J. 2015;34:1296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Costa P, Sales SLA, Pinheiro DP, Pontes LQ, Maranhao SS, Pessoa CDO, et al. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol. 2023;11:1116805.

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martins-Ferreira R, Leal B, Costa PP, Ballestar E. Microglial innate memory and epigenetic reprogramming in neurological disorders. Prog Neurobiol. 2021;200:101971.

    Article  CAS  PubMed  Google Scholar 

  57. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8:173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res. 2020;10:1954–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2017;357:eaal2380.

  60. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141:432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18:5546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4:a014241.

  64. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005;25:10220–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24:10826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou PH, Luo CK, Wali N, Lin WY, Ng SK, Wang CH, et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci. 2022;29:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmitt M, Greten FR. The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol. 2021;21:653–67.

    Article  CAS  PubMed  Google Scholar 

  68. MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology. 2011;140:1768–75.

    Article  CAS  PubMed  Google Scholar 

  69. Andrews C, McLean MH, Durum SK. Cytokine Tuning of Intestinal Epithelial Function. Front Immunol. 2018;9:1270.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun. 2022;42:689–715.

    Article  Google Scholar 

  71. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, et al. Mutant p53 prolongs NF-kappaB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;23:634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sena MarianiF, Roncucci P. L. Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol. 2014;20:9716–31.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang Z, Wu P, Wu D, Zhang Z, Hu G, Zhao S, et al. Prognostic and clinicopathological significance of serum interleukin-6 expression in colorectal cancer: a systematic review and meta-analysis. OncoTargets Ther. 2015;8:3793–801.

    Article  Google Scholar 

  74. Knupfer H, Preiss R. Serum interleukin-6 levels in colorectal cancer patients-a summary of published results. Int J colorectal Dis. 2010;25:135–40.

    Article  PubMed  Google Scholar 

  75. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res : GCR. 2012;5:19–27.

    PubMed  PubMed Central  Google Scholar 

  76. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Therapeutic Adv Med Oncol. 2016;8:57–84.

    Article  CAS  Google Scholar 

  77. De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol. 2021;95:2279–97.

    Article  PubMed Central  Google Scholar 

  78. Casaretti ComellaP, Sandomenico R, Avallone C, Franco A. L. Role of oxaliplatin in the treatment of colorectal cancer. Ther Clin Risk Manag. 2009;5:229–38.

    PubMed  PubMed Central  Google Scholar 

  79. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu Y, Wang C, Becker SA, Hurst K, Nogueira LM, Findlay VJ, et al. miR-145 Antagonizes SNAI1-Mediated Stemness and Radiation Resistance in Colorectal Cancer. Mol Ther : J Am Soc Gene Ther. 2018;26:744–54.

    Article  CAS  Google Scholar 

  81. Park SY, Lee CJ, Choi JH, Kim JH, Kim JW, Kim JY, et al. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res : CR. 2019;38:399.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shang Y, Zhu Z, Zhang Y, Ji F, Zhu L, Liu M, et al. MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Discov. 2023;9:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reed E. ERCC1 and clinical resistance to platinum-based therapy. Clin Cancer Res. 2005;11:6100–2.

    Article  CAS  PubMed  Google Scholar 

  84. Gossage L, Madhusudan S. Current status of excision repair cross complementing-group 1 (ERCC1) in cancer. Cancer Treat Rev. 2007;33:565–77.

    Article  CAS  PubMed  Google Scholar 

  85. Seetharam RN, Sood A, Basu-Mallick A, Augenlicht LH, Mariadason JM, Goel S. Oxaliplatin resistance induced by ERCC1 up-regulation is abrogated by siRNA-mediated gene silencing in human colorectal cancer cells. Anticancer Res. 2010;30:2531–8.

    CAS  PubMed  Google Scholar 

  86. Han W, Yin H, Ma H, Wang Y, Kong D, Fan Z. Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p. Evid-Based Complementary Alternative Med : eCAM. 2020;2020:8394574.

    Article  PubMed Central  Google Scholar 

  87. Ng SK, Chung DJ, Chang LC, Luo CK, Jwo SH, Lee YH, et al. The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses. Biomed Pharmacother. 2023;161:114467.

    Article  CAS  PubMed  Google Scholar 

  88. Luo CK, Chou PH, Ng SK, Lin WY, Wei TT. Cannabinoids orchestrate cross-talk between cancer cells and endothelial cells in colorectal cancer. Cancer Gene Ther. 2022;29:597–611.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Taiwan Human Disease Induced Pluripotent Stem Cell Service Consortium (Taiwan-iPSC consortium) for helping with iPSC generation. We are grateful to Dr. Ching-Chow Chen (Department and Graduate Institute of Pharmacology, National Taiwan University) for providing human CRC cells for this project. We also acknowledge Kuo-Tai Hua (Graduate Institute of Toxicology, National Taiwan University) for helping with shRNA lentiviral particle production. We thank the imaging core at the First Core Labs, National Taiwan University College of Medicine, for technical support in image acquisition and analysis. Thanks to the members of our laboratory for their contributions.

Funding

This work was financially supported by the National Science and Technology Council, Taiwan (109-2813-C-002-115-B, 111-2813-C-002-236-B, and 112-2320-B-002-028-MY3) and the National Taiwan University College of Medicine (111L4000 and 112L4000). The authors would like to express their gratitude to the National Taiwan University College of Medicine for facility support.

Author information

Authors and Affiliations

Authors

Contributions

DJ Chung, CH Wang, PJ Liu, SK Ng, CK Luo, SH Jwo, CT Li, DY Hsu, and CC Fan performed the experiments, analyzed the data and created the figures. TT Wei designed the study and initiated the project. TT Wei supervised the research and wrote the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Tzu-Tang Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The authors declare that all methods were performed in accordance with the relevant guidelines and regulations. The procedures for collecting human blood samples were approved by the Institutional Review Board of the National Taiwan University Hospital. Signed informed consent was obtained from all participants. Additionally, the authors have obtained written informed consent for publication of the images.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, DJ., Wang, CH., Liu, P. et al. Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC. Cancer Gene Ther 31, 1734–1748 (2024). https://doi.org/10.1038/s41417-024-00838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00838-9

Search

Quick links