Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of tumor-derived exosomal LncRNA in tumor metastasis

A Correction to this article was published on 24 April 2025

This article has been updated

Abstract

Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment (TME). Exosomes can regulate the TME through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biogenesis of exosomes and lncRNAs.
Fig. 2: Tumor-derived exosomes have been demonstrated to promote the metastasis of cancer.

Similar content being viewed by others

Change history

References

  1. Gravis G, Boher JM, Joly F, Soulie M, Albiges L, Priou F, et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur Urol. 2016;70:256–62. https://doi.org/10.1016/j.eururo.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  2. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet. 2019;393:2051–8. https://doi.org/10.1016/s0140-6736(18)32487-5.

    Article  PubMed  Google Scholar 

  3. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 2021;21:446–60. https://doi.org/10.1038/s41568-021-00353-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li F, Xu T, Chen P, Sun R, Li C, Zhao X, et al. Platelet-derived extracellular vesicles inhibit ferroptosis and promote distant metastasis of nasopharyngeal carcinoma by upregulating ITGB3. Int J Biol Sci. 2022;18:5858–72. https://doi.org/10.7150/ijbs.76162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smid M, Wang YX, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 2008;68:3108–14. https://doi.org/10.1158/0008-5472.CAN-07-5644.

    Article  CAS  PubMed  Google Scholar 

  6. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22:310–20. https://doi.org/10.1038/s41556-020-0477-0.

    Article  CAS  PubMed  Google Scholar 

  7. Liu YM, Ge JY, Chen YF, Liu T, Chen L, Liu CC, et al. Combined Single-Cell and Spatial Transcriptomics Reveal the Metabolic Evolvement of Breast Cancer during Early Dissemination. Adv Sci. 2023;10:e2205395. https://doi.org/10.1002/advs.202205395.

    Article  CAS  Google Scholar 

  8. Dashzeveg NK, Jia Y, Zhang Y, Gerratana L, Patel P, Shajahan A, et al. Dynamic Glycoprotein Hyposialylation Promotes Chemotherapy Evasion and Metastatic Seeding of Quiescent Circulating Tumor Cell Clusters in Breast Cancer. Cancer Discov. 2023;13:2050–71. https://doi.org/10.1158/2159-8290.CD-22-0644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma L, Wang L, Chang C-W, Heinrich S, Dominguez D, Forgues M, et al. Single-cell atlas of tumor clonal evolution in liver cancer. 2020. https://doi.org/10.1101/2020.08.18.254748.

  10. Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013;13:1554–71. https://doi.org/10.1002/pmic.201200329.

    Article  CAS  PubMed  Google Scholar 

  11. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367. https://doi.org/10.1126/science.aau6977.

  12. Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21:207. https://doi.org/10.1186/s12943-022-01671-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62. https://doi.org/10.1016/j.cmet.2021.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10:3684–707. https://doi.org/10.7150/thno.41580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura K, Zhu Z, Roy S, Jun E, Han H, Munoz RM, et al. An Exosome-based Transcriptomic Signature for Noninvasive, Early Detection of Patients With Pancreatic Ductal Adenocarcinoma: A Multicenter Cohort Study. Gastroenterology. 2022;163:1252–66.e2. https://doi.org/10.1053/j.gastro.2022.06.090.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou BT, Xu KL, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5:144. https://doi.org/10.1038/s41392-020-00258-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu P, Mo YZ, Peng M, Tang T, Zhong Y, Deng X, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19:22. https://doi.org/10.1186/s12943-020-1147-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai MC, Manor O, Wan Y, Mosammaparast N. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He Y, Jiang X, Duan L, Xiong Q, Yuan Y, Liu P, et al. LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway. Molecular Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01469-6.

  20. Ransohoff JD, Wei YN, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19:143–57. https://doi.org/10.1038/nrm.2017.104.

    Article  CAS  PubMed  Google Scholar 

  21. Popadin K, Gutierrez-Arcelus M, Dermitzakis ET, Antonarakis SE. Genetic and epigenetic regulation of human lincRNA gene expression. Am J Hum Genet. 2013;93:1015–26. https://doi.org/10.1016/j.ajhg.2013.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82:2252–66. https://doi.org/10.1016/j.molcel.2022.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell. 2020;183:1151–61. https://doi.org/10.1016/j.cell.2020.09.047.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang QH, Wang JX, Wu XL, Ma R, Zhang T, Jin S, et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 2015;43:193–6. https://doi.org/10.1093/nar/gku1173.

    Article  CAS  Google Scholar 

  25. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  26. McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 2021;75:38–48. https://doi.org/10.1016/j.semcancer.2020.12.012.

    Article  CAS  PubMed  Google Scholar 

  27. Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194419. https://doi.org/10.1016/j.bbagrm.2019.194419.

    Article  CAS  PubMed  Google Scholar 

  28. Zong Y, Wang X, Cui B, Xiong X, Wu A, Lin C, et al. Decoding the regulatory roles of non-coding RNAs in cellular metabolism and disease. Mol Ther. 2023;31:1562–76. https://doi.org/10.1016/j.ymthe.2023.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Z, Jiang S, Shang JJ, Jiang Y, Dai Y, Xu B, et al. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 2019;52:17–31. https://doi.org/10.1016/j.arr.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  30. Ma YX, Zhang J, Wen LX, Lin AF. Membrane-lipid associated lncRNA: A new regulator in cancer signaling. Cancer Lett. 2018;419:27–9. https://doi.org/10.1016/j.canlet.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  31. Li SL, Li YC, Chen B, Zhao J, Yu S, Tang Y, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46:D106–D12. https://doi.org/10.1093/nar/gkx891.

    Article  CAS  PubMed  Google Scholar 

  32. Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front Physiol. 2020;11:604274. https://doi.org/10.3389/fphys.2020.604274.

    Article  PubMed  Google Scholar 

  33. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68:2667–88. https://doi.org/10.1007/s00018-011-0689-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krylova SV, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24021337.

  35. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41. https://doi.org/10.1016/j.cell.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  36. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155. https://doi.org/10.1186/s12943-015-0426-x.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288:6850–912. https://doi.org/10.1111/febs.15776.

    Article  CAS  PubMed  Google Scholar 

  38. Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22:48. https://doi.org/10.1186/s12943-023-01744-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res. 2008;68:10377–86. https://doi.org/10.1158/0008-5472.CAN-08-1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8:629–42. https://doi.org/10.1158/1541-7786.MCR-10-0139.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Guo S, Deng J, Shen J, Du F, Wu X, et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int J Biol Sci. 2022;18:3845–58. https://doi.org/10.7150/ijbs.70958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng ZC, Li YL, Pan YJ, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395. https://doi.org/10.1038/s41467-018-07810-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest. 2014;124:922–8. https://doi.org/10.1172/JCI71606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang EL, Wang X, Gong ZY, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5:242. https://doi.org/10.1038/s41392-020-00359-5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15:827–37. https://doi.org/10.1016/j.cmet.2012.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guppy M, Leedman P, Zu XL. V R. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J. 2002;364:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.

    Article  CAS  PubMed  Google Scholar 

  49. Enzo E, Santinon G, Pocaterra A, Aragona M, Forcato M, Bresolin S, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34:1349–470. https://doi.org/10.15252/embj.201490379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang M, Wang N, Zhang H, Sun L, Xu Q, Liang L, et al. Fatty acid transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the AMPK-mTOR signaling pathway. Oncogenesis. 2021;10:74. https://doi.org/10.1038/s41389-021-00364-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chu Z, Huo N, Zhu X, Liu H, Cong R, Ma L, et al. FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther. 2021;29:2737–53. https://doi.org/10.1016/j.ymthe.2021.04.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, et al. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. Cancer Commun. 2022;42:848–67. https://doi.org/10.1002/cac2.12341.

    Article  Google Scholar 

  53. Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Res. 2020;80:4932–45. https://doi.org/10.1158/0008-5472.CAN-20-1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Chen J, Lu J, Xi J, Xu Z, Fan L, et al. Metal ions/nucleotide coordinated nanoparticles comprehensively suppress tumor by synergizing ferroptosis with energy metabolism interference. J Nanobiotechnol. 2022;20:199. https://doi.org/10.1186/s12951-022-01405-w.

    Article  CAS  Google Scholar 

  55. Meng WR, Hao YY, He CS, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57. https://doi.org/10.1186/s12943-019-0982-6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Godet I, Shin YJ, Ju JA, Ye IC, Wang G, Gilkes DM. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 2019;10:4862. https://doi.org/10.1038/s41467-019-12412-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008;22:559–74. https://doi.org/10.1101/gad.1636908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34. https://doi.org/10.1182/blood-2004-03-1109.

    Article  CAS  PubMed  Google Scholar 

  60. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52. https://doi.org/10.1038/nrc2618.

    Article  CAS  PubMed  Google Scholar 

  61. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14:430–9. https://doi.org/10.1038/nrc3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gwak H, Park S, Kim J, Lee JD, Kim IS, Kim SI, et al. Microfluidic chip for rapid and selective isolation of tumor-derived extracellular vesicles for early diagnosis and metastatic risk evaluation of breast cancer. Biosens Bioelectron. 2021;192:113495. https://doi.org/10.1016/j.bios.2021.113495.

    Article  CAS  PubMed  Google Scholar 

  63. Liu W, Song J, Du X, Zhou Y, Li Y, Li R, et al. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 2019;91:195–208. https://doi.org/10.1016/j.actbio.2019.04.053.

    Article  CAS  PubMed  Google Scholar 

  64. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4. https://doi.org/10.1186/s13045-019-0829-z.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Du J, Lan T, Liao H, Feng X, Chen X, Liao W, et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol Cancer. 2022;21:18. https://doi.org/10.1186/s12943-021-01482-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bogani G, Mariani A, Paolini B, Ditto A, Raspagliesi F. Low-volume disease in endometrial cancer: The role of micrometastasis and isolated tumor cells. Gynecol Oncol. 2019;153:670–5. https://doi.org/10.1016/j.ygyno.2019.02.027.

    Article  PubMed  Google Scholar 

  67. Rampaul RS, Miremadi A, Pinder SE, A L, IO E. Pathological validation and significance of micrometastasis in sentinel nodes in primary breast cancer. Breast Cancer Res. 2001;3:113–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sabouni E, Nejad MM, Mojtabavi S, Khoshduz S, Mojtabavi M, Nadafzadeh N, et al. Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother. 2023;160:114395. https://doi.org/10.1016/j.biopha.2023.114395.

    Article  CAS  PubMed  Google Scholar 

  70. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  71. Lv X, Lian Y, Liu Z, Xiao J, Zhang D, Yin X. Exosomal long non-coding RNA LINC00662 promotes non-small cell lung cancer progression by miR-320d/E2F1 axis. Aging. 2021;13:6010–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zang XY, Gu JM, Zhang JY, Shi H, Hou SN, Xu X, et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis. 2020;11:215. https://doi.org/10.1038/s41419-020-2409-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu D, Deng S, Li L, Liu T, Zhang T, Li J, et al. TGF-beta1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 2021;12:721. https://doi.org/10.1038/s41419-021-04004-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luan YP, Li X, Luan YQ, Zhao R, Li YM, Liu L, et al. Circulating lncRNA UCA1 Promotes Malignancy of Colorectal Cancer via the miR-143/MYO6 Axis. Mol Ther Nucleic Acids. 2020;19:790–803. https://doi.org/10.1016/j.omtn.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  75. Xu J, Xiao Y, Liu B, Pan S, Liu Q, Shan Y, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J Exp Clin Cancer Res. 2020;39:54. https://doi.org/10.1186/s13046-020-01562-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang ZX, Liu HS, Wang FW, Xiong L, Zhou C, Hu T, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019;10:829. https://doi.org/10.1038/s41419-019-2077-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dai W, Jin X, Han L, Huang H, Ji Z, Xu X, et al. Exosomal lncRNA DOCK9-AS2 derived from cancer stem cell-like cells activated Wnt/beta-catenin pathway to aggravate stemness, proliferation, migration, and invasion in papillary thyroid carcinoma. Cell Death Dis. 2020;11:743. https://doi.org/10.1038/s41419-020-02827-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hardin H, Helein H, Meyer K, Robertson S, Zhang R, Zhong W, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Invest. 2018;98:1133–42. https://doi.org/10.1038/s41374-018-0065-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M, et al. Cancer stem cell-like cells-derived exosomal lncRNA CDKN2B-AS1 promotes biological characteristics in thyroid cancer via miR-122-5p/P4HA1 axis. Regen Ther. 2023;22:19–29. https://doi.org/10.1016/j.reth.2022.11.005.

    Article  CAS  PubMed  Google Scholar 

  80. Piao HY, Guo S, Wang Y, Zhang J. Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin Transl Oncol. 2021;23:246–56. https://doi.org/10.1007/s12094-020-02412-9.

    Article  CAS  PubMed  Google Scholar 

  81. Wang LY, Bo XT, Yi XY, Xiao XH, Zheng QH, Ma L, et al. Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis. 2020;11:723. https://doi.org/10.1038/s41419-020-02810-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang C, Wang H, Liu Q, Dai S, Tian G, Wei X, et al. LncRNA CCAT1 facilitates the progression of gastric cancer via PTBP1-mediated glycolysis enhancement. J Exp Clin Cancer Res. 2023;42:246. https://doi.org/10.1186/s13046-023-02827-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602. https://doi.org/10.1038/nrc1670.

    Article  CAS  PubMed  Google Scholar 

  84. Lu YH, Chen L, Li LD, Cao YQ. Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5. Biomed Res Int. 2020;2020:7461727. https://doi.org/10.1155/2020/7461727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kong X, Li J, Li Y, Duan W, Qi Q, Wang T, et al. A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer. Cell Death Dis. 2021;12:670. https://doi.org/10.1038/s41419-021-03943-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Farhadi S, Mohammadi-Yeganeh S, Kiani J, Hashemi SM, Koochaki A, Sharifi K, et al. Exosomal delivery of 7SK long non-coding RNA suppresses viability, proliferation, aggressiveness and tumorigenicity in triple negative breast cancer cells. Life Sci. 2023;322:121646. https://doi.org/10.1016/j.lfs.2023.121646.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng H, Chen C, Luo Y, Yu M, He W, An M, et al. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin Transl Med. 2021;11:e497. https://doi.org/10.1002/ctm2.497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang CS, Ho JY, Chiang JH, Yu CP, Yu DS. Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells. 2020;9:1419. https://doi.org/10.3390/cells9061419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yan L, Wang PY, Fang WH, Liang CZ. Cancer-associated fibroblasts-derived exosomes-mediated transfer of LINC00355 regulates bladder cancer cell proliferation and invasion. Cell Biochem Funct. 2020;38:257–65. https://doi.org/10.1002/cbf.3462.

    Article  CAS  PubMed  Google Scholar 

  90. Lai YJ, Dong LH, Jin HF, Li HJ, Sun ML, Li JL. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging. 2021;13:23726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin N, Jin NQ, Bu WH, Li X, Liu L, Wang Z, et al. Long non-coding RNA TIRY promotes tumor metastasis by enhancing epithelial-to-mesenchymal transition in oral cancer. Exp Biol Med. 2020;245:585–96. https://doi.org/10.1177/1535370220903673.

    Article  CAS  Google Scholar 

  92. Li ZR, Qin XB, Bian W, Li Y, Shan B, Yao Z, et al. Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res. 2019;38:477–90. https://doi.org/10.1186/s13046-019-1473-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takahashi K, Ota Y, Kogure T, Suzuki Y, Iwamoto H, Yamakita K, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci. 2020;111:98–111. https://doi.org/10.1111/cas.14232.

    Article  CAS  PubMed  Google Scholar 

  94. Wang XJ, Li HZ, Lu XX, Wen C, Huo Z, Shi M, et al. Melittin-induced long non-coding RNA NONHSAT105177 inhibits proliferation and migration of pancreatic ductal adenocarcinoma. Cell Death Dis. 2018;9:940. https://doi.org/10.1038/s41419-018-0965-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80. https://doi.org/10.1038/ni1013.

    Article  CAS  PubMed  Google Scholar 

  96. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145. https://doi.org/10.1038/s41392-020-00261-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen CH, Luo YM, He W, Zhao Y, Kong Y, Liu H, et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest. 2020;130:404–21. https://doi.org/10.1172/JCI130892.

    Article  CAS  PubMed  Google Scholar 

  98. You LN, Tai QW, Xu L, Hao Y, Guo WJ, Zhang Q, et al. Exosomal LINC00161 promotes angiogenesis and metastasis via regulating miR-590-3p/ROCK axis in hepatocellular carcinoma. Cancer Gene Ther. 2021;28:719–36. https://doi.org/10.1038/s41417-020-00269-2.

    Article  CAS  PubMed  Google Scholar 

  99. Guo Z, Wang X, Yang Y, Chen W, Zhang K, Teng B, et al. Hypoxic Tumor-Derived Exosomal Long Noncoding RNA UCA1 Promotes Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer. Mol Ther Nucleic Acids. 2020;22:179–95. https://doi.org/10.1016/j.omtn.2020.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang C, Luo Y, Cao J, Wang X, Miao Z, Shao G. Exosomal lncRNA FAM225A accelerates esophageal squamous cell carcinoma progression and angiogenesis via sponging miR-206 to upregulate NETO2 and FOXP1 expression. Cancer Med. 2020;9:8600–11. https://doi.org/10.1002/cam4.3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Su CY, Zhang JY, Yarden Y, Fu LW. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther. 2021;6:109. https://doi.org/10.1038/s41392-021-00499-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang XC, Yan YK, Hu MH, Chen X, Wang Y, Dai Y, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg. 2016;124:129–36. https://doi.org/10.3171/2014.12.JNS1426.

    Article  CAS  PubMed  Google Scholar 

  103. Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, et al. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Cancer Res Treat. 2018;170:507–16. https://doi.org/10.1007/s10549-018-4793-z.

    Article  CAS  PubMed  Google Scholar 

  104. Ye J, Wang Z, Zhao J, Chen W, Wu D, Wu P, et al. MicroRNA-141 inhibits tumor growth and minimizes therapy resistance in colorectal cancer. Mol Med Rep. 2017;15:1037–42. https://doi.org/10.3892/mmr.2017.6135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ren J, Ding L, Zhang DY, Shi G, Xu Q, Shen S, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8:3932–48. https://doi.org/10.7150/thno.25541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Domvri K, Petanidis S, Anestakis D, Porpodis K. Exosomal lncRNA PCAT-1 promotes Kras-associated chemoresistance via immunosuppressive miR-182/miR-217 signaling and p27/CDK6 regulation. Oncotarget. 2020;11:2847–62.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li W, Zhang LY, Guo BB, Deng J, Wu S, Li F, et al. Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFkappaB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 2019;18:22. https://doi.org/10.1186/s12943-019-0949-7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ni C, Fang QQ, Chen WZ, Jiang JX, Jiang Z, Ye J, et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+gammadelta1 Treg cells. Signal Transduct Target Ther. 2020;5:41. https://doi.org/10.1038/s41392-020-0129-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fan F, Chen KJ, Lu XL, Li AJ, Liu C, Wu B. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 2020;15:444–58. https://doi.org/10.1007/s12072-020-10101-6.

    Article  PubMed  Google Scholar 

  110. Xie Z, Xia J, Jiao M, Zhao P, Wang Z, Lin S, et al. Exosomal lncRNA HOTAIR induces PDL1(+) B cells to impede anti-tumor immunity in colorectal cancer. Biochem Biophys Res Commun. 2023;644:112–21. https://doi.org/10.1016/j.bbrc.2023.01.005.

    Article  CAS  PubMed  Google Scholar 

  111. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72:3125–30. https://doi.org/10.1158/0008-5472.CAN-11-4094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen J, Zhang K, Zhi Y, Wu Y, Chen B, Bai J, et al. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin Transl Med. 2021;11:e478. https://doi.org/10.1002/ctm2.478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liang YR, Song XJ, Li YM, Chen B, Zhao W, Wang L, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer. 2020;19:85. https://doi.org/10.1186/s12943-020-01206-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ji W, Bai J, Ke Y. Exosomal ZFPM2-AS1 contributes to tumorigenesis, metastasis, stemness, macrophage polarization, and infiltration in hepatocellular carcinoma through PKM mediated glycolysis. Environ Toxicol. 2023;38:1332–46. https://doi.org/10.1002/tox.23767.

    Article  CAS  PubMed  Google Scholar 

  116. Wang JS, Yang K, Yuan WX, Gao ZY. Determination of Serum Exosomal H19 as a Noninvasive Biomarker for Bladder Cancer Diagnosis and Prognosis. Med Sci Monit. 2018;24:9307–16. https://doi.org/10.12659/MSM.912018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lei Y, Guo W, Chen BW, Chen L, Gong J, Li W. Tumorreleased lncRNA H19 promotes gefitinib resistance via packaging into exosomes in nonsmall cell lung cancer. Oncol Rep. 2018;40:3438–46. https://doi.org/10.3892/or.2018.6762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang Y, Liu YT, Tang H, Xie WQ, Yao H, Gu WT, et al. Exosome-Transmitted lncRNA H19 Inhibits the Growth of Pituitary Adenoma. J Clin Endocrinol Metab. 2019;104:6345–56. https://doi.org/10.1210/jc.2019-00536.

    Article  PubMed  Google Scholar 

  119. Chen LS, Yao HB, Wang K, Liu XF. Long Non-Coding RNA MALAT1 Regulates ZEB1 Expression by Sponging miR-143-3p and Promotes Hepatocellular Carcinoma Progression. J Cell Biochem. 2017;118:4836–43. https://doi.org/10.1002/jcb.26158.

    Article  CAS  PubMed  Google Scholar 

  120. Hsu XR, Wu JE, Wu YY, Hsiao SY, Liang JL, Wu YJ, et al. Exosomal long noncoding RNA MLETA1 promotes tumor progression and metastasis by regulating the miR-186-5p/EGFR and miR-497-5p/IGF1R axes in non-small cell lung cancer. J Exp Clin Cancer Res. 2023;42:283. https://doi.org/10.1186/s13046-023-02859-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang P, Zhou HX, Lu KF, Lu YO, Wang Y, Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther. 2018;11:291–9. https://doi.org/10.2147/OTT.S155134.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY, Hua KQ. Exosomal Metastasis‑Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci. 2018;14:1960–73. https://doi.org/10.7150/ijbs.28048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen P, Liu Z, Xiao H, Yang X, Li T, Huang W, et al. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin Transl Oncol. 2023;25:3447–59. https://doi.org/10.1007/s12094-023-03208-3.

    Article  CAS  PubMed  Google Scholar 

  124. Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, et al. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One. 2016;11:e0147236. https://doi.org/10.1371/journal.pone.0147236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang CC, Xu LS, Deng G, Ding Y, Bi K, Jin H, et al. Exosomal HOTAIR promotes proliferation, migration and invasion of lung cancer by sponging miR-203. Sci China Life Sci. 2020;63:1265–8. https://doi.org/10.1007/s11427-019-1579-x.

    Article  CAS  PubMed  Google Scholar 

  126. Wang YL, Liu LC, Hung Y, Chen CJ, Lin YZ, Wu WR, et al. Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast. 2019;46:64–9. https://doi.org/10.1016/j.breast.2019.05.003.

    Article  PubMed  Google Scholar 

  127. Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C, et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer. 2018;17:74. https://doi.org/10.1186/s12943-018-0822-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12:137. https://doi.org/10.1186/s13045-019-0833-3.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14:85. https://doi.org/10.1186/s13045-021-01096-0.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kok VC, Yu CC. Cancer-Derived Exosomes: Their Role in Cancer Biology and Biomarker Development. Int J Nanomed. 2020;15:8019–36. https://doi.org/10.2147/IJN.S272378.

    Article  CAS  Google Scholar 

  131. Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 2022;343:107–17. https://doi.org/10.1016/j.jconrel.2022.01.026.

    Article  CAS  PubMed  Google Scholar 

  132. Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, et al. Responsive Exosome Nano-bioconjugates for Synergistic Cancer Therapy. Angew Chem Int Ed Engl. 2020;59:2018–22. https://doi.org/10.1002/anie.201912524.

    Article  CAS  PubMed  Google Scholar 

  133. Li J, Li J, Peng Y, Du Y, Yang Z, Qi X. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies. J Control Rel. 2023;353:423–33. https://doi.org/10.1016/j.jconrel.2022.11.053.

    Article  CAS  Google Scholar 

  134. Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891. https://doi.org/10.1016/j.addr.2021.113891.

    Article  CAS  PubMed  Google Scholar 

  135. Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol. 2023;41:1549–64. https://doi.org/10.1016/j.tibtech.2023.06.005.

    Article  CAS  PubMed  Google Scholar 

  136. Ali HS, Boshra MS, El Meteini MS, Shafei AE, Matboli M. lncRNA- RP11-156p1.3, novel diagnostic and therapeutic targeting via CRISPR/Cas9 editing in hepatocellular carcinoma. Genomics. 2020;112:3306–14. https://doi.org/10.1016/j.ygeno.2020.06.020.

    Article  CAS  PubMed  Google Scholar 

  137. Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf Z, Bedhiafi T, et al. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res. 2022;41:99. https://doi.org/10.1186/s13046-022-02318-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guo T, Tang XH, Gao XY, Zhou Y, Jin B, Deng ZQ, et al. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer. Mol Cancer. 2022;21:216. https://doi.org/10.1186/s12943-022-01684-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. Cancer Drug Resist. 2019;2:1178–92. https://doi.org/10.20517/cdr.2019.74.

    Article  Google Scholar 

  140. Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell. 2016;29:653–68. https://doi.org/10.1016/j.ccell.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  141. Yu Z, Tang H, Chen S, Xie Y, Shi L, Xia S, et al. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy. Drug Resist Updat. 2023;67:100915. https://doi.org/10.1016/j.drup.2022.100915.

    Article  CAS  PubMed  Google Scholar 

  142. Liu X, Zhang G, Yu T, Liu J, Chai X, Yin D, et al. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy. Int J Biol Macromol. 2023;250:126147. https://doi.org/10.1016/j.ijbiomac.2023.126147.

    Article  CAS  PubMed  Google Scholar 

  143. Yi K, Wang Y, Rong Y, Bao Y, Liang Y, Chen Y, et al. Transcriptomic Signature of 3D Hierarchical Porous Chip Enriched Exosomes for Early Detection and Progression Monitoring of Hepatocellular Carcinoma. Adv Sci (Weinh). 2024;11:e2305204. https://doi.org/10.1002/advs.202305204.

    Article  CAS  PubMed  Google Scholar 

  144. Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol. 2023;11:1143157. https://doi.org/10.3389/fbioe.2023.1143157.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cheng X, Li Z, Shan R, Li Z, Wang S, Zhao W, et al. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches. Nat Commun. 2023;14:752. https://doi.org/10.1038/s41467-023-36316-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. Adv Mater. 2024:e2403199. https://doi.org/10.1002/adma.202403199.

  147. Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, et al. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B. 2024;14:905–52. https://doi.org/10.1016/j.apsb.2023.12.010.

    Article  CAS  PubMed  Google Scholar 

  148. Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer. 2018;17:84. https://doi.org/10.1186/s12943-018-0834-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhao R, Zhang YL, Zhang X, Yang Y, Zheng X, Li X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17:68. https://doi.org/10.1186/s12943-018-0817-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, et al. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol. 2017;143:991–1004. https://doi.org/10.1007/s00432-017-2361-2.

    Article  CAS  PubMed  Google Scholar 

  151. Guo X, Lv X, Ru Y, Zhou F, Wang N, Xi H, et al. Circulating Exosomal Gastric Cancer-Associated Long Noncoding RNA1 as a Biomarker for Early Detection and Monitoring Progression of Gastric Cancer: A Multiphase Study. JAMA Surg. 2020;155:572–9. https://doi.org/10.1001/jamasurg.2020.1133.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhao W, Zhang Y, Zhang W, Sun Y, Zheng B, Wang J, et al. Exosomal LINC00355 promotes the malignant progression of gastric cancer through histone deacetylase HDAC3-mediated TP53INP1 transcriptional inhibition. Life Sci. 2023;315:121387. https://doi.org/10.1016/j.lfs.2023.121387.

    Article  CAS  PubMed  Google Scholar 

  153. Ma B, Wang J, Yusufu P. Tumor‐derived exosome ElNF1‐AS1 affects the progression of gastric cancer by promoting M2 polarization of macrophages. Environ Toxicol. 2023;38:2228–39. https://doi.org/10.1002/tox.23862.

    Article  CAS  PubMed  Google Scholar 

  154. Liu T, Zhang X, Gao SY, Jing F. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7:85551–63.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol Biomark Prev. 2016;25:1158–66. https://doi.org/10.1158/1055-9965.EPI-16-0006.

    Article  CAS  Google Scholar 

  156. Zhao WM, Song M, Zhang J, Kuerban M, Wang HJ. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. Int J Clin Exp Pathol. 2015;8:14131–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao YH, Du TT, Du LT, Li P, Li J, Duan W, et al. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis. 2019;10:568. https://doi.org/10.1038/s41419-019-1804-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zheng R, Du ML, Wang XW, Xu W, Liang J, Wang W, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17:143. https://doi.org/10.1186/s12943-018-0880-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhan Y, Du LT, Wang LS, Jiang X, Zhang S, Li J, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer. 2018;17:142. https://doi.org/10.1186/s12943-018-0893-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer. 2017;16:143. https://doi.org/10.1186/s12943-017-0714-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zheng R, Gao F, Mao Z, Xiao Y, Yuan L, Huang Z, et al. LncRNA BCCE4 Genetically Enhances the PD-L1/PD-1 Interaction in Smoking-Related Bladder Cancer by Modulating miR-328-3p-USP18 Signaling. Adv Sci. 2023;10:e2303473. https://doi.org/10.1002/advs.202303473.

    Article  CAS  Google Scholar 

  162. Li BG, Mao R, Liu CF, Zhang W, Tang Y, Guo Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci. 2018;197:122–9. https://doi.org/10.1016/j.lfs.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  163. Ni Q, Zhang H, Shi X, Li X. Exosomal lncRNA HCG18 contributes to cholangiocarcinoma growth and metastasis through mediating miR-424-5p/SOX9 axis through PI3K/AKT pathway. Cancer Gene Ther. 2023;30:582–95. https://doi.org/10.1038/s41417-022-00500-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang J, Cai M, Jiang DW, Xu L. Upregulated LncRNA-CCAT1 promotes hepatocellular carcinoma progression by functioning as miR-30c-2-3p sponge. Cell Biochem Funct. 2019;37:84–92. https://doi.org/10.1002/cbf.3375.

    Article  CAS  PubMed  Google Scholar 

  165. Sun L, Su YY, Liu XX, Xu M, Chen X, Zhu Y, et al. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer. 2018;9:2631–9. https://doi.org/10.7150/jca.24978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Huang XJ, Sun LY, Wen S, Deng D, Wan F, He X, et al. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci. 2020;111:3338–49. https://doi.org/10.1111/cas.14516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yao J, Hua X, Shi J, Hu X, Lui K, He K, et al. LncRNA THEMIS2-211, a tumor-originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA. FASEB J. 2022;36:e22238. https://doi.org/10.1096/fj.202101564R.

    Article  CAS  PubMed  Google Scholar 

  168. Teng Y, Kang H, Chu Y. Identification of an Exosomal Long Noncoding RNA SOX2-OT in Plasma as a Promising Biomarker for Lung Squamous Cell Carcinoma. Genet Test Mol Biomark. 2019;23:235–40. https://doi.org/10.1089/gtmb.2018.0103.

    Article  CAS  Google Scholar 

  169. Cheng Y, Dai X, Yang T, Zhang N, Liu Z, Jiang Y. Low Long Noncoding RNA Growth Arrest-Specific Transcript 5 Expression in the Exosomes of Lung Cancer Cells Promotes Tumor Angiogenesis. J Oncol. 2019;2019:2476175. https://doi.org/10.1155/2019/2476175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang XL, Guo HH, Bao Y, Yu HM, Xie D, Wang X. Exosomal long non‑coding RNA DLX6‑AS1 as a potential diagnostic biomarker for non‑small cell lung cancer. Oncol Lett. 2019;18:5197–204. https://doi.org/10.3892/ol.2019.10892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang R, Xia YH, Wang ZX, Zheng J, Chen Y, Li X, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun. 2017;490:406–14. https://doi.org/10.1016/j.bbrc.2017.06.055.

    Article  CAS  PubMed  Google Scholar 

  172. Min L, Zhu T, Lv B, An T, Zhang Q, Shang Y, et al. Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol. 2022;27:1013–24. https://doi.org/10.1007/s10147-022-02129-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cheng C, Zhang ZC, Cheng FL, Shao ZW. Exosomal lncRNA RAMP2-AS1 Derived from Chondrosarcoma Cells Promotes Angiogenesis Through miR-2355-5p/VEGFR2 Axis. Onco Targets Ther. 2020;13:3291–301. https://doi.org/10.2147/OTT.S244652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang B, Wang X, Li P, Niu X, Liang X, Liu G, et al. Osteosarcoma Cell-Derived Exosomal ELFN1-AS1 Mediates Macrophage M2 Polarization via Sponging miR-138-5p and miR-1291 to Promote the Tumorgenesis of Osteosarcoma. Front Oncol. 2022;12:881022. https://doi.org/10.3389/fonc.2022.881022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chang X, Tan Q, Xu J, Wu X, Wang Y, Zhang Y, et al. Tumor-derived exosomal linc00881 induces lung fibroblast activation and promotes osteosarcoma lung migration. Cancer Cell Int. 2023;23. https://doi.org/10.1186/s12935-023-03121-3.

  176. Li QM, Wang XD, Jiang N, Xie X, Liu N, Liu J, et al. Exosome-transmitted linc00852 associated with receptor tyrosine kinase AXL dysregulates the proliferation and invasion of osteosarcoma. Cancer Med. 2020;9:6354–66. https://doi.org/10.1002/cam4.3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhao W, Qin P, Zhang D, Cui XC, Guo J, Yu ZZ. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging. 2019;11:9581–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhong GB, Wang KQ, Li JW, Xiao S, Wei W, Liu J. Determination of Serum Exosomal H19 as a Noninvasive Biomarker for Breast Cancer Diagnosis. Onco Targets Ther. 2020;13:2563–71. https://doi.org/10.2147/OTT.S243601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, et al. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett. 2022;548:215751. https://doi.org/10.1016/j.canlet.2022.215751.

    Article  CAS  PubMed  Google Scholar 

  180. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253–68. https://doi.org/10.1016/j.omtn.2021.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Feng Z, Li K, Qin K, Liang J, Shi M, Ma Y, et al. The LINC00623/NAT10 signaling axis promotes pancreatic cancer progression by remodeling ac4C modification of mRNA. J Hematol Oncol. 2022;15:112. https://doi.org/10.1186/s13045-022-01338-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li ZH, Jiang P, Li J, Peng M, Zhao X, Zhang X, et al. Tumor-derived exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. Oncogene. 2018;37:3822–38. https://doi.org/10.1038/s41388-018-0237-9.

    Article  CAS  PubMed  Google Scholar 

  183. Huang LJ, Wang Y, Chen J, Wang Y, Zhao Y, Wang Y, et al. Long noncoding RNA PCAT1, a novel serum-based biomarker, enhances cell growth by sponging miR-326 in oesophageal squamous cell carcinoma. Cell Death Dis. 2019;10:513. https://doi.org/10.1038/s41419-019-1745-4.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Liu J, Zhou WY, Luo XJ, Chen YX, Wong CW, Liu ZX, et al. Long noncoding RNA Regulating ImMune Escape regulates mixed lineage leukaemia protein-1-H3K4me3-mediated immune escape in oesophageal squamous cell carcinoma. Clin Transl Med. 2023;13:e1410. https://doi.org/10.1002/ctm2.1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jiao ZC, Yu A, Rong WW, He XF. Five-lncRNA signature in plasma exosomes serves as diagnostic biomarker for esophageal squamous cell carcinoma. Aging. 2020;12:18632–103559.

    Article  Google Scholar 

  186. Zhang ZR, Yin JX, Lu CF, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38:166. https://doi.org/10.1186/s13046-019-1139-6.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Li J, Liao T, Liu H, Yuan H, Ouyang T, Wang J, et al. Hypoxic Glioma Stem Cell-Derived Exosomes Containing Linc01060 Promote Progression of Glioma by Regulating the MZF1/c-Myc/HIF1alpha Axis. Cancer Res. 2021;81:114–28. https://doi.org/10.1158/0008-5472.CAN-20-2270.

    Article  CAS  PubMed  Google Scholar 

  188. Huang XX, Liu XM, Du B, Liu XL, Xue M, Yan Q, et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging. 2021;13:19230–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gao Z, Wang Q, Ji M, Guo X, Li L, Su X. Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. J Transl Med. 2021;19:229. https://doi.org/10.1186/s12967-021-02872-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2021YFE0202000), China-Bulgaria Science and Technology Cooperation Committee 18th Regular Meeting Exchange Project (18-9), the Affiliated Qingyuan Hospital of Guangzhou Medical University (202301-301), The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University (20240068JJ), Guangzhou Medical University Undergraduates project (pdjh 2022b0425, 02-410-2206301).

Author information

Authors and Affiliations

Authors

Contributions

Zhile Yu, Jiali Fu and Yusong Wu: wrote the manuscript; Tungalag Battulga, Dianchang Wen: completed the figures and tables; Vanya Mantareva, Ivica Blažević: revised the manuscript; Yuqing Wang, Jianye Zhang: conceived and revised the manuscript; All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Tungalag Battulga, Yuqing Wang or Jianye Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Fu, J., Mantareva, V. et al. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 32, 273–285 (2025). https://doi.org/10.1038/s41417-024-00852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00852-x

Search

Quick links