Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of exosomes in diagnosis, prognosis, and therapeutic potential in ovarian cancer: a comprehensive review

Abstract

Ovarian cancer is a leading cause of cancer-related deaths in women, and the development of chemoresistance remains a major challenge during and after its treatment. Exosomes, small extracellular vesicles involved in intercellular communication, have emerged as potential biomarkers and therapeutic targets in ovarian cancer. This review summarizes the current literature on differences in exosomal protein/gene expression between chemosensitive and chemoresistant ovarian cancer, and the effects of exosomal modifications on chemotherapeutic response. Clinical studies have identified alterations in several exosomal components from ovarian cancer tissues and serum samples arising as a consequence of chemosensitivity, which indicates their potential usefulness as potential biomarkers for predicting the development of chemoresistance. Interventional investigations from in vitro and in vivo studies demonstrated that modulation of specific exosomal components can influence ovarian cancer cell phenotypes and individual responses to chemotherapy. Exosomal delivery of chemotherapeutic agents, such as cisplatin, has presented as a potential targeted drug delivery strategy for overcoming chemoresistance in preclinical models. In summary, this review highlights the potential for exosomal proteins and genes to be useful biomarkers for predicting chemotherapy response and being therapeutic targets for overcoming chemoresistance in ovarian cancer. However, future research is still needed to validate these findings and explore the clinical utility of exosomal biomarkers and therapeutics in ovarian cancer management. In addition, understanding the molecular mechanisms underlying exosome-mediated chemoresistance may provide valuable insights for the development of personalized therapeutic strategies, improving outcomes for patients with ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A summary of the mechanisms employed by modulating exosomal proteins and genes on chemosensitivity in chemotherapy-treated ovarian cancer.

Similar content being viewed by others

References

  1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96.

    PubMed  PubMed Central  Google Scholar 

  2. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    PubMed  Google Scholar 

  3. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.

    CAS  PubMed  Google Scholar 

  4. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94.

    CAS  PubMed  Google Scholar 

  6. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.

    CAS  PubMed  Google Scholar 

  7. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–38.

    CAS  PubMed  Google Scholar 

  8. Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.

    PubMed  PubMed Central  Google Scholar 

  9. Crow J, Atay S, Banskota S, Artale B, Schmitt S, Godwin AK. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget. 2017;8:11917–36.

    PubMed  PubMed Central  Google Scholar 

  10. Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, et al. Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 2016;76:7194–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846:75–87.

    CAS  PubMed  Google Scholar 

  12. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao YL, Zhuang T, Xing BH, Li N, Li Q. Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct. 2017;35:296–303.

    CAS  PubMed  Google Scholar 

  14. Chen C, Zhang L, Ruan Z. GATA3 encapsulated by tumor-associated macrophage-derived extracellular vesicles promotes immune escape and chemotherapy resistance of ovarian cancer cells by upregulating the CD24/Siglec-10 axis. Mol Pharm. 2023;20:971–86.

    CAS  PubMed  Google Scholar 

  15. Huang H, Yan L, Zhong J, Hong L, Zhang N, Luo X. Circ_0025033 deficiency suppresses paclitaxel resistance and malignant development of paclitaxel-resistant ovarian cancer cells by modulating the miR-532-3p/FOXM1 network. Immunopharmacol Immunotoxicol. 2022;44:275–86.

    CAS  PubMed  Google Scholar 

  16. Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 2018;38:100–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Niu H, Qin Q, Yang S, Wang Q, Yu C, et al. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer. Mol Ther Nucleic Acids. 2019;17:92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Parashar D, Geethadevi A, McAllister D, Ebben J, Peterson FC, Jensen DR, et al. Targeted biologic inhibition of both tumor cell-intrinsic and intercellular CLPTM1L/CRR9-mediated chemotherapeutic drug resistance. NPJ Precis Oncol. 2021;5:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheng H, Wang X. Knockdown of circ-PIP5K1A overcomes resistance to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs. 2023;34:214–26.

    CAS  PubMed  Google Scholar 

  20. Wang H, Li Y, Wang Y, Shang X, Yan Z, Li S, et al. Cisplatin-induced PANDAR-Chemo-EVs contribute to a more aggressive and chemoresistant ovarian cancer phenotype through the SRSF9-SIRT4/SIRT6 axis. J Gynecol Oncol. 2024;35:e13.

    CAS  PubMed  Google Scholar 

  21. Yin J, Huang HY, Long Y, Ma Y, Kamalibaike M, Dawuti R, et al. circ_C20orf11 enhances DDP resistance by inhibiting miR-527/YWHAZ through the promotion of extracellular vesicle-mediated macrophage M2 polarization in ovarian cancer. Cancer Biol Ther. 2021;22:440–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhuang L, Zhang B, Liu X, Lin L, Wang L, Hong Z, et al. Exosomal miR-21-5p derived from cisplatin-resistant SKOV3 ovarian cancer cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Cell Biol Int. 2021;45:2140–9.

    CAS  PubMed  Google Scholar 

  23. Gao Y, Huang Y. Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a miR-532-5p-dependent manner. J Chemother. 2023;35:117–30.

    CAS  PubMed  Google Scholar 

  24. Zou Y, Zhao Z, Wang J, Ma L, Liu Y, Sun L, et al. Extracellular vesicles carrying miR-6836 derived from resistant tumor cells transfer cisplatin resistance of epithelial ovarian cancer via DLG2-YAP1 signaling pathway. Int J Biol Sci. 2023;19:3099–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Jiang L, Liu Q. miR-18a-5p derived from mesenchymal stem cells-extracellular vesicles inhibits ovarian cancer cell proliferation, migration, invasion, and chemotherapy resistance. J Transl Med. 2022;20:258.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao Z, Ji M, Wang Q, He N, Li Y. Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids. 2019;18:24–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan Z, Lu L, Zhang L, Dong M. Bone marrow stromal cells-derived microRNA-181-containing extracellular vesicles inhibit ovarian cancer cell chemoresistance by downregulating MEST via the Wnt/beta-catenin signaling pathway. Cancer Gene Ther. 2021;28:785–98.

    CAS  PubMed  Google Scholar 

  28. Fan YL, Jin JX, Zhu J, Ruan HB, Huang JQ. Extracellular vesicles of Bifidobacterium longum reverse the acquired carboplatin resistance in ovarian cancer cells via p53 phosphorylation on Ser15. Kaohsiung J Med Sci. 2024;40:49–58.

    Google Scholar 

  29. Luo Y, Gui R. Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. 2020;31:e75.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin J, Yan X, Yao X, Zhang Y, Shan Y, Mao N, et al. Secretion of annexin A3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. J Cell Mol Med. 2012;16:337–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo Y, Zhang Q, Lv B, Shang Y, Li J, Yang L, et al. CircFOXP1: a novel serum diagnostic biomarker for non-small cell lung cancer. Int J Biol Markers. 2022;37:58–65.

    CAS  PubMed  Google Scholar 

  32. Ozturk A. Role of annexin A3 in breast cancer (Review). Mol Clin Oncol. 2022;16:111.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sathipati SY, Tsai MJ, Aimalla N, Moat L, Shukla SK, Allaire P, et al. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform. 2024;6:lqae022.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Alharbi M, Sharma S, Guanzon D, Lai A, Zuniga F, Shiddiky MJA, et al. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer. Nanomedicine. 2020;28:102207.

    CAS  PubMed  Google Scholar 

  35. Asare-Werehene M, Nakka K, Reunov A, Chiu CT, Lee WT, Abedini MR, et al. The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene. 2020;39:1600–16.

    CAS  PubMed  Google Scholar 

  36. Cerne K, Kelhar N, Resnik N, Herzog M, Vodnik L, Veranic P, et al. Characteristics of extracellular vesicles from a high-grade serous ovarian cancer cell line derived from a platinum-resistant patient as a potential tool for aiding the prediction of responses to chemotherapy. Pharmaceuticals. 2023;16:531.

    Google Scholar 

  37. Shi Y, Zou Y, Guo Y, Liu Y, Wang Q. Exosomal transfer of miR-548aq-3p confers cisplatin resistance via MED12 downregulation in epithelial ovarian cancer. Am J Cancer Res. 2023;13:1999–2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Liu L, Liu Q, Zheng J, Zheng Q, Chen Y, et al. Identification of upregulated exosomal miRNAs between A2780 and A2780/DDP human ovarian cancer cells by high-throughput sequencing. J Ovarian Res. 2023;16:94.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiner-Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 2015;4:745–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, et al. Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 2017;15:78–92.

    CAS  PubMed  Google Scholar 

  41. Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: a potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol. 2019;54:1719–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 2014;12:4.

    PubMed  PubMed Central  Google Scholar 

  43. Alharbi M, Zuniga F, Elfeky O, Guanzon D, Lai A, Rice GE, et al. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer. 2018;25:R663–R85.

    CAS  PubMed  Google Scholar 

  44. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137:143–51.

    CAS  PubMed  Google Scholar 

  45. Li T, Lin L, Liu Q, Gao W, Chen L, Sha C, et al. Exosomal transfer of miR-429 confers chemoresistance in epithelial ovarian cancer. Am J Cancer Res. 2021;11:2124–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Samuel P, Mulcahy LA, Furlong F, McCarthy HO, Brooks SA, Fabbri M, et al. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170065.

    PubMed  Google Scholar 

  47. Yilmaz G, Tavsan Z, Cagatay E, Kursunluoglu G, Kayali HA. Exosomes released from cisplatin-resistant ovarian cancer cells modulate the reprogramming of cells in tumor microenvironments toward the cancerous cells. Biomed Pharmacother. 2023;157:113973.

    CAS  PubMed  Google Scholar 

  48. Vera N, Acuna-Gallardo S, Grunenwald F, Caceres-Verschae A, Realini O, Acuna R, et al. Small extracellular vesicles released from ovarian cancer spheroids in response to cisplatin promote the pro-tumorigenic activity of mesenchymal stem cells. Int J Mol Sci. 2019;20:4972.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, et al. NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol. 2022;13:1087689.

    CAS  PubMed  Google Scholar 

  50. Asare-Werehene M, Communal L, Carmona E, Han Y, Song YS, Burger D, et al. Plasma gelsolin inhibits CD8(+) T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res. 2020;80:3959–71.

    PubMed  Google Scholar 

  51. Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 2019;19:347.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Misawa T, Toyoshima M, Kitatani K, Ishibashi M, Hasegawa-Minato J, Shigeta S, et al. Involvement of small extracellular vesicle-derived TIE-1 in the chemoresistance of ovarian cancer cells. Cancer Treat Res Commun. 2021;27:100364.

    PubMed  Google Scholar 

  53. Qiu L, Wang J, Chen M, Chen F, Tu W. Exosomal microRNA‑146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2‑mediated PI3K/Akt axis. Int J Mol Med. 2020;46:609–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Liu J, Xu X, Li L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol. 2017;79:479–87.

    CAS  PubMed  Google Scholar 

  55. Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine. 2016;11:2431–41.

    CAS  PubMed  Google Scholar 

  56. Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm. 2020;46:1150–62.

    CAS  PubMed  Google Scholar 

  57. Zhou G, Gu Y, Zhu Z, Zhang H, Liu W, Xu B, et al. Exosome mediated cytosolic cisplatin delivery through clathrin-independent endocytosis and enhanced anti-cancer effect via avoiding endosome trapping in cisplatin-resistant ovarian cancer. Front Med. 2022;9:810761.

    Google Scholar 

  58. Liu X, Liu G, Mao Y, Luo J, Cao Y, Tan W, et al. Engineering extracellular vesicles mimetics for targeted chemotherapy of drug-resistant ovary cancer. Nanomedicine. 2024;19:25–41.

    CAS  PubMed  Google Scholar 

  59. Aqil F, Jeyabalan J, Agrawal AK, Kyakulaga AH, Munagala R, Parker L, et al. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 2017;8:4100–7.

    CAS  PubMed  Google Scholar 

  60. Wang C, Guan W, Peng J, Chen Y, Xu G, Dou H. Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater. 2020;103:247–58.

    CAS  PubMed  Google Scholar 

  61. Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, et al. Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis-triggered energy dissipation and energy production reduction. Adv Sci. 2022;9:e2105274.

    Google Scholar 

  62. Zhao C, Qiu L, Wu D, Zhang M, Xia W, Lv H, et al. Targeted reversal of multidrug resistance in ovarian cancer cells using exosome-encapsulated tetramethylpyrazine. Mol Med Rep. 2024;29:27.

    Google Scholar 

  63. Li L, He D, Guo Q, Zhang Z, Ru D, Wang L, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology. 2022;20:50.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian J, Han Z, Song D, Peng Y, Xiong M, Chen Z, et al. Engineered exosome for drug delivery: recent development and clinical applications. Int J Nanomed. 2023;18:7923–40.

    CAS  Google Scholar 

  65. Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 2020;486:18–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol. 2022;86:80–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer. 2022;21:179.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Distinguished Research Professor Grant from the National Research Council of Thailand (N42A660301: SCC); the Research Chair Grant from the National Research Council of Thailand (N42A670595: NC); and the Chiang Mai University Center of Excellence Award (NC); National Research Council of Thailand (N42A660432: NA).

Author information

Authors and Affiliations

Authors

Contributions

TT: conceptualization, data curation, formal analysis, writing—original draft, writing—review & editing. NA: conceptualization, visualization, writing—review & editing. KC: conceptualization, visualization, writing—original draft, writing—review & editing. NC: conceptualization, visualization, funding acquisition, writing—review & editing. SCC: conceptualization, visualization, funding acquistion, supervision, writing—review & editing.

Corresponding author

Correspondence to Siriporn C. Chattipakorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuscharoenporn, T., Apaijai, N., Charoenkwan, K. et al. Emerging roles of exosomes in diagnosis, prognosis, and therapeutic potential in ovarian cancer: a comprehensive review. Cancer Gene Ther 32, 149–164 (2025). https://doi.org/10.1038/s41417-025-00871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00871-2

Search

Quick links