Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of prohibitins in cancer: an update

Abstract

The prohibitin (PHB) family, including PHB1 and its homolog PHB2, is ubiquitously located in different cellular compartments and plays roles in fundamental cellular processes such as proliferation, differentiation, and apoptosis. Accumulating evidence has indicated that this family contributes to the development of numerous diseases in particular cancers. Aberrant expressions of PHBs can been observed in diverse types of human cancer. Depending on their cell compartment-specific attributes and interacting proteins, PHBs are tightly linked to almost all aspects of cancer biology and have distinct bidirectional functions of tumor-suppression or tumor-promotion. However, the roles of PHBs in cancer have yet to be fully characterized and understood. This review provides an updated overview of the pleiotropic effects of PHBs and emphasizes their characteristic roles in each cancer respectively, with the great expectation to identify potential targets for therapeutic approaches and promising molecular biomarkers for cancer diagnosis and prognostic monitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic drawing of emerging roles of prohibitins in cancers.
Fig. 2: The mRNA expression level of PHBs in numerous types of human cancer.
Fig. 3: The protein expression level of PHBs in numerous types of human cancer.
Fig. 4: Schematic diagram of the multiple mechanisms of PHB1 in cancers.
Fig. 5: Schematic diagram of the multiple mechanisms of PHB2 in cancers.

Similar content being viewed by others

Data availability

Research data is presented in the main text.

References

  1. McClung JK, Danner DB, Stewart DA, Smith JR, Schneider EL, Lumpkin CK, et al. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem Biophys Res Commun. 1989;164:1316–22.

    Article  CAS  PubMed  Google Scholar 

  2. Manjeshwar S, Branam DE, Lerner MR, Brackett DJ, Jupe ER. Tumor suppression by the prohibitin gene 3’untranslated region RNA in human breast cancer. Cancer Res. 2003;63:5251–6.

    CAS  PubMed  Google Scholar 

  3. Ansari-Lari M, Shen Y, Muzny D, Lee W, Gibbs R. Large-scale sequencing in human chromosome 12p13: experimental and computational gene structure determination. Genome Res. 1997;7:268–80.

    Article  CAS  PubMed  Google Scholar 

  4. Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, et al. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci. 2020;77:3525–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma LL, Shen L, Tong GH, Tang N, Luo Y, Guo LL, et al. Prohibitin, relocated to the front ends, can control the migration directionality of colorectal cancer cells. Oncotarget. 2017;8:76340–56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8:71.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, et al. The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. Cancer Res. 1992;52:1643–6.

    CAS  PubMed  Google Scholar 

  8. Wu B, Chang N, Xi H, Xiong J, Zhou Y, Wu Y, et al. PHB2 promotes tumorigenesis via RACK1 in non-small cell lung cancer. Theranostics. 2021;11:3150–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang JW, Murray B, Barbier-Torres L, Liu T, Liu Z, Yang H, et al. The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. J Biol Chem. 2019;294:1984–96.

    Article  CAS  PubMed  Google Scholar 

  10. Tao L, Yin Z, Ni T, Chu Z, Hao S, Wang Z, et al. The ethyl acetate extract from celastrus orbiculatus promotes apoptosis of gastric cancer cells through mitochondria regulation by PHB. Front Pharm. 2021;12:635467.

    Article  CAS  Google Scholar 

  11. Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. FEBS Open Bio. 2020;10:2182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghazy AA, El-Etreby NM, Rashad R, Moussa N. Role of oxidative stress in prognosis of ovarian cancer. Egypt J Immunol. 2020;27:31–38.

    PubMed  Google Scholar 

  13. Shen Y, Gao Y, Yuan H, Cao J, Jia B, Li M, et al. Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration. Int J Mol Med. 2018;41:1147–55.

    CAS  PubMed  Google Scholar 

  14. Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis. 2018;9:580.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramani K, Mavila N, Ko KS, Mato JM, Lu SC. Prohibitin 1 regulates the H19-Igf2 axis and proliferation in hepatocytes. J Biol Chem. 2016;291:24148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharmila M, Dannielle EB, Megan RL, Daniel JB, Eldon RJ. Tumor suppression by the prohibitin gene 3'untranslated region RNA in human breast cancer. Cancer Res. 2003;63:5251–6.

    Google Scholar 

  17. Wang S, Zhang B, Faller DV. BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists. EMBO J. 2004;23:2293–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J, Li G, Huang Y, Liu Y. Decreasing expression of Prohibitin-2 lowers the oncogenicity of renal cell carcinoma cells by suppressing eIF4E-mediated oncogene translation via MNK inhibition. Toxicol Appl Pharmacol. 2023;466:116458.

    Article  CAS  PubMed  Google Scholar 

  19. Dart DA, Spencer-Dene B, Gamble SC, Waxman J, Bevan CL. Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocr Relat Cancer. 2009;16:1157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu P, Xu Y, Zhang W, Li Y, Tang L, Chen W, et al. Prohibitin promotes androgen receptor activation in ER-positive breast cancer. Cell Cycle. 2017;16:776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Jia L, Feng Y, Zheng W. Overexpression of follicle-stimulating hormone receptor facilitates the development of ovarian epithelial cancer. Cancer Lett. 2009;278:56–64.

    Article  CAS  PubMed  Google Scholar 

  22. Jia L, Ren JM, Wang YY, Zheng Y, Zhang H, Zhang Q, et al. Inhibitory role of prohibitin in human ovarian epithelial cancer. Int J Clin Exp Pathol. 2014;7:2247–55.

    PubMed  PubMed Central  Google Scholar 

  23. Jia L, Yi XF, Zhang ZB, Zhuang ZP, Li J, Chambers SK, et al. Prohibitin as a novel target protein of luteinizing hormone in ovarian epithelial carcinogenesis. Neoplasma. 2011;58:104–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, et al. Prohibitin 1 acts as a negative regulator of wingless/integrated-beta-catenin signaling in murine liver and human liver cancer cells. Hepatol Commun. 2018;2:1583–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan W, Yang H, Liu T, Wang J, Li TW, Mavila N, et al. Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology. 2017;65:1249–66.

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Xu L, Yang Y, Dong L, Zhao B, Lu J, et al. A novel prognostic marker and immunogenic membrane antigen: prohibitin (PHB) in pancreatic cancer. Clin Transl Gastroenterol. 2018;9:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng F, Qiu B, Zang R, Song P, Gao S. Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression. Oncotarget. 2017;8:29091–29100.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A. Blomme A, et al. Inhibition of MYCtranslation through targeting of the newly identified PHB-eIF4F complex as therapeutic strategy in CLL. Blood. 2023;141:3166–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu X, Xu Y, Solis LM, Tao W, Wang L, Behrens C, et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci USA. 2015;112:7779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koushyar S, Economides G, Zaat S, Jiang W, Bevan CL, Dart DA. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells. Oncogenesis. 2017;6:e333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai Y, Ngo D, Jacob J, Forman LW, Faller DV. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis. 2008;29:1725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fletcher CE, Dart DA, Sita-Lumsden A, Cheng H, Rennie PS, Bevan CL. Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet. 2012;21:3112–27.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Wang LN, Lin YN, Xing YX, Shi Y, Zhao J, et al. The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2. Asian J Androl. 2018;20:511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juan-Juan S, Yi-Kai W, Mu-Qi W, Jiang D, Ning G, Mei L. Prohibitin 1 inhibits cell proliferation and induces apoptosis via the p53-mediated mitochondrial pathway in vitro. World J Gastrointest Oncol. 2024;16:398–413.

    Article  Google Scholar 

  35. Kakehashi A, Ishii N, Shibata T, Wei M, Okazaki E, Tachibana T, et al. Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci. 2011;119:61–72.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Zhou Y, Oyang L, Han Y, Xia L, Lin J, et al. LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene. 2019;38:5062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L, Ji Q, Ni ZH, Sun J. Prohibitin induces apoptosis in BGC823 gastric cancer cells through the mitochondrial pathway. Asian Pac J Cancer Prev. 2012;13:3803–7.

    Article  PubMed  Google Scholar 

  38. Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273:233–42.

    Article  CAS  PubMed  Google Scholar 

  39. Puppin C, Passon N, Franzoni A, Russo D, Damante G. Histone deacetylase inhibitors control the transcription and alternative splicing of prohibitin in thyroid tumor cells. Oncol Rep. 2011;25:393–7.

    CAS  PubMed  Google Scholar 

  40. Sanchez-Quiles V, Santamaria E, Segura V, Sesma L, Prieto J, Corrales FJ. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics. 2010;10:1609–20.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Yin Y, Wang J, Zhang J, Liu H, Feng W, et al. Prohibitin regulates mTOR pathway via interaction with FKBP8. Front Med. 2021;15:448–59.

    Article  PubMed  Google Scholar 

  42. Han EK, McGonigal T, Butler C, Giranda VL, Luo Y. Characterization of Akt overexpression in MiaPaCa-2 cells: prohibitin is an Akt substrate both in vitro and in cells. Anticancer Res. 2008;28:957–63.

    CAS  PubMed  Google Scholar 

  43. Jiang L, Dong P, Zhang Z, Li C, Li Y, Liao Y, et al. Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells. Cell Death Dis. 2015;6:e1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang H, Yin C, Liu X, Bai X, Wang L, Xu H, et al. Prohibitin 2/PHB2 in Parkin-Mediated Mitophagy: A Potential Therapeutic Target for Non-Small Cell Lung Carcinoma. Med Sci Monit. 2020;26:e923227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng J, Gao F, Chen X, Wu J, Xing C, Lv Z, et al. Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog. 2014;53:820–32.

    Article  CAS  PubMed  Google Scholar 

  46. Kim NH, Yoshimaru T, Chen YA, Matsuo T, Komatsu M, Miyoshi Y, et al. BIG3 Inhibits the Estrogen-Dependent Nuclear Translocation of PHB2 via Multiple Karyopherin-Alpha Proteins in Breast Cancer Cells. PLoS One. 2015;10:e0127707.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yoshimaru T, Komatsu M, Miyoshi Y, Honda J, Sasa M, Katagiri T. Therapeutic advances in BIG3-PHB2 inhibition targeting the crosstalk between estrogen and growth factors in breast cancer. Cancer Sci. 2015;106:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, He P, Liu F, Cheng X, Zhang M. Over-expression of prohibitin gene promotes apoptosis in retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1.Chin J Cell Mol Immunol. 2014;30:933–6.

    CAS  Google Scholar 

  49. Liu Y, He P, Zhang M, Wu D. Lentiviral vector-mediated RNA interference targeted against prohibitin inhibits apoptosis of the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1. Mol Med Rep. 2012;6:1288–92.

    Article  CAS  PubMed  Google Scholar 

  50. Qiu QC, Hu B, He XP, Luo Q, Tang GH, Long ZF, et al. STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis. Genet Mol Biol. 2012;35:18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kathiria AS, Neumann WL, Rhees J, Hotchkiss E, Cheng Y, Genta RM, et al. Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res. 2012;72:5778–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen HB, Pan K, Tang MK, Chui YL, Chen L, Su ZJ, et al. Comparative proteomic analysis reveals differentially expressed proteins regulated by a potential tumor promoter, BRE, in human esophageal carcinoma cells. Biochem Cell Biol. 2008;86:302–11.

    Article  CAS  PubMed  Google Scholar 

  53. He F, Zeng Y, Wu X, Ji Y, He X, Andrus T, et al. Endogenous HIV-1 Vpr-mediated apoptosis and proteome alteration of human T-cell leukemia virus-1 transformed C8166 cells. Apoptosis. 2009;14:1212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu B, Zhai J, Zhu H, Kyprianou N. Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate. 2010;70:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gregory-Bass RC, Olatinwo M, Xu W, Matthews R, Stiles JK, Thomas K, et al. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer. 2008;122:1923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ross JA, Robles-Escajeda E, Oaxaca DM, Padilla DL, Kirken RA. The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies. Oncotarget. 2017;8:65445–56.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Woodlock TJ, Bethlendy G, Segel GB. Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes. Blood Cells Mol Dis. 2001;27:27–34.

    Article  CAS  PubMed  Google Scholar 

  58. Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA. The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol. 1997;7:607–10.

    Article  CAS  PubMed  Google Scholar 

  59. Borutinskaite VV, Magnusson KE, Navakauskiene R. alpha-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep. 2011;38:3001–11.

    Article  CAS  PubMed  Google Scholar 

  60. Ian C M, Yi B, Heathcliff Dorado G, Michael V O, Joern T, Filippos K. et al. Prohibitin promotes de-differentiation and is a potential therapeutic target in neuroblastoma. JCI Insight. 2019;5:e127130.

    Google Scholar 

  61. Bavelloni A, Piazzi M, Faenza I, Raffini M, D’Angelo A, Cattini L, et al. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. FASEB J. 2014;28:2009–19.

    Article  CAS  PubMed  Google Scholar 

  62. Zilong Z, Huihan A, Kun L, Xinlei Y, Wenbin Z, Lei L. et al. Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep. 2018;8:1479.

    Article  Google Scholar 

  63. Xu ZH, Miao ZW, Jiang QZ, Gan DX, Wei XG, Xue XZ, et al. Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB J. 2019;33:1742–57.

    Article  CAS  PubMed  Google Scholar 

  64. Wei F, DuoYao C, Bing Y, Jiaohong W, Xiaomo L, Diana K. et al. Diana K et al. Hepatic prohibitin 1 and methionineadenosyltransferase α1 defend against primary and secondary liver cancer metastasis. J Hepatol. 2023;80:443–53.

    Google Scholar 

  65. Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K, et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology. 2010;52:2096–108.

    Article  CAS  PubMed  Google Scholar 

  66. Xu Z, Wu J, Zha X. Up-regulation of prohibitin 1 is involved in the proliferation and migration of liver cancer cells. Sci China Life Sci. 2011;54:121–7.

    Article  CAS  PubMed  Google Scholar 

  67. Xiang X, Fu Y, Zhao K, Miao R, Zhang X, Ma X, et al. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics. 2021;11:4929–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, et al. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer. 2019;18:120.

    Article  PubMed  PubMed Central  Google Scholar 

  69. He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS, et al. A repressive role for prohibitin in estrogen signaling. Mol Endocrinol. 2008;22:344–60.

    Article  CAS  PubMed  Google Scholar 

  70. Yager JD, Davidson NE. Estrogen Carcinogenesis in Breast Cancer. N. Engl J Med. 2006;354:270–82.

    Article  CAS  PubMed  Google Scholar 

  71. Bai Y, Ludescher M, Poschmann G, Stühler K, Wyrich M, Oles J. et al. PGRMC1 promotes progestin-dependent proliferation of breast cancer cells by binding prohibitins resulting in activation of ERα signaling. Cancers. 2021;13:5635.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling*. J Biol Chem. 2003;278:47853–61.

    Article  CAS  PubMed  Google Scholar 

  73. Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem. 2004;279:24834–43.

    Article  CAS  PubMed  Google Scholar 

  74. Chigira T, Nagatoishi S, Tsumoto K. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants. Biochem Biophys Res Commun. 2015;463:726–31.

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimaru T, Komatsu M, Matsuo T, Chen YA, Murakami Y, Mizuguchi K, et al. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat Commun. 2013;4:2443.

    Article  PubMed  Google Scholar 

  76. Yoshimaru T, Aihara K, Komatsu M, Matsushita Y, Okazaki Y, Toyokuni S, et al. Stapled BIG3 helical peptide ERAP potentiates anti-tumour activity for breast cancer therapeutics. Sci Rep. 2017;7:1821.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Takagi H, Moyama C, Taniguchi K, Ando K, Matsuda R, Ando S, et al. γFluorizoline Blocks the Interaction between Prohibitin-2 and -Glutamylcyclotransferase and Induces Expression in MCF7 Breast Cancer Cells. Mol Pharmacol. 2022;101:78–86.

    Article  CAS  PubMed  Google Scholar 

  78. Gamble SC, Odontiadis M, Waxman J, Westbrook JA, Dunn MJ, Wait R, et al. Androgens target prohibitin to regulate proliferation of prostate cancer cells. Oncogene. 2004;23:2996–3004.

    Article  CAS  PubMed  Google Scholar 

  79. Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM, et al. Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene. 2007;26:1757–68.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu B, Fukada K, Zhu H, Kyprianou N. Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res. 2006;66:8640–7.

    Article  CAS  PubMed  Google Scholar 

  81. Koushyar S, Uysal-Onganer P, Jiang WG, Dart DA. Prohibitin links cell cycle, motility and invasion in prostate cancer cells. Int J Mol Sci. 2023;24:9919.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K, Theiss AL. Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene. 2021;40:369–83.

    Article  CAS  PubMed  Google Scholar 

  83. Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, et al. The synthetic small molecule FL3 combats intestinal tumorigenesis via axin1-mediated inhibition of Wnt/β-catenin signaling. Cancer Res. 2020;80:3519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watanabe M, Yamada Y, Kurumida Y, Kameda T, Sukeno M, Iizuka-Ohashi M. et al. Rabdosianone I, a bitter diterpene from an oriental herb, suppresses thymidylate synthase expression by directly binding to ANT2 and PHB2. Cancers. 2021;13:982.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Zheng Y, Chai Z, Li J, Zhu C, Peng Y, et al. Dihydroartemisinin synergistically enhances the cytotoxic effects of oxaliplatin in colon cancer by targeting the PHB2-RCHY1 mediated signaling pathway. Mol Carcinog. 2023;62:293–302.

    Article  CAS  PubMed  Google Scholar 

  86. Ren L, Meng L, Gao J, Lu M, Guo C, Li Y, et al. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation. Cell Death Dis. 2023;14:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen L, Wang C, Chen X, Wu Y, Chen M, Deng X, et al. GOLPH3 inhibits erastin-induced ferroptosis in colorectal cancer cells. Cell Biol Int. 2024;48:1198–211.

    Article  CAS  PubMed  Google Scholar 

  88. Pomares H, Palmeri CM, Iglesias-Serret D, Moncunill-Massaguer C, Saura-Esteller J, Núñez-Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987–65000.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wierz M, Pierson S, Chouha N, Désaubry L, François JH, Berchem G, et al. The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells ex vivo but fails to prevent leukemia development in a murine model. Haematologica. 2018;103:e154–e157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cosialls AM, Pomares H, Iglesias-Serret D, Saura-Esteller J, Nunez-Vazquez S, Gonzalez-Girones DM, et al. The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax. Haematologica. 2017;102:1587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu Y, Yang W, Guarani V, Shi J, Harper J, Zetter B. Abstract 18: prohibitin 1 regulates apoptosis via its interaction with XIAP. Cancer Res. 2015;75:18–18.

    Article  Google Scholar 

  92. He P, Liu Y, Qi J, Zhu H, Wang Y, Zhao J, et al. Prohibitin promotes apoptosis of promyelocytic leukemia induced by arsenic sulfide. Int J Oncol. 2015;47:2286–95.

    Article  CAS  PubMed  Google Scholar 

  93. Kuramori C, Azuma M, Kume K, Kaneko Y, Inoue A, Yamaguchi Y, et al. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochem Biophys Res Commun. 2009;379:519–25.

    Article  CAS  PubMed  Google Scholar 

  94. Núñez-Vázquez S, Sánchez-Vera I, Saura-Esteller J, Cosialls A, Noisier A, Albericio F. et al. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J. 2020;288:1271–85.

    Article  PubMed  Google Scholar 

  95. von Wenserski L, Schultheiß C, Bolz S, Schliffke S, Simnica D, Willscher E, et al. SLAMF receptors negatively regulate B cell receptor signaling in chronic lymphocytic leukemia via recruitment of prohibitin-2. Leukemia. 2021;35:1073–86.

    Article  Google Scholar 

  96. Wu TF, Wu H, Wang YW, Chang TY, Chan SH, Lin YP, et al. Prohibitin in the pathogenesis of transitional cell bladder cancer. Anticancer Res. 2007;27:895–900.

    CAS  PubMed  Google Scholar 

  97. El-Etreby NM, Ghazy AA, Rashad R. Prohibitin: targeting peptide coupled to ovarian cancer, luteinization and TGF-beta pathways. J Ovarian Res. 2017;10:28.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fang CH, Lin YT, Liang CM, Liang SM. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and beta-catenin-ABCG2 signaling. J Biomed Sci. 2020;27:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng M, Yu H, Kong Q, Wang B, Shen L, Dong D. et al. The mitochondrial PHB2/OMA1/DELE1 pathway cooperates with endoplasmic reticulum stress to facilitate the response to chemotherapeutics in ovarian cancer. Int J Mol Sci. 2022;23:1320.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wong PF, Cheong WF, Shu MH, Teh CH, Chan KL, AbuBakar S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine. 2012;19:138–44.

    Article  CAS  PubMed  Google Scholar 

  101. Jiang P, Xiang Y, Wang YJ, Li SM, Wang Y, Hua HR, et al. Differential expression and subcellular localization of Prohibitin 1 are related to tumorigenesis and progression of non-small cell lung cancer. Int J Clin Exp Pathol. 2013;6:2092–101.

    PubMed  PubMed Central  Google Scholar 

  102. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778–89.

    Article  CAS  PubMed  Google Scholar 

  103. Luan Z, He Y, Alattar M, Chen Z, He F. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer. 2014;13:38.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kang X, Zhang L, Sun J, Ni Z, Ma Y, Chen X, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43:618–25.

    Article  CAS  PubMed  Google Scholar 

  105. Qi A, Lamont L, Liu E, Murray SD, Meng X, Yang S. Essential protein PHB2 and its regulatory mechanisms in cancer. Cells. 2023;12:1211.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, et al. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int. 2022;22:343.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Leal MF, Cirilo PD, Mazzotti TK, Calcagno DQ, Wisnieski F, Demachki S, et al. Prohibitin expression deregulation in gastric cancer is associated with the 3’ untranslated region 1630 C>T polymorphism and copy number variation. PLoS ONE. 2014;9:e98583.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kim DM, Jang H, Shin MG, Kim JH, Shin SM, Min SH, et al. beta-catenin induces expression of prohibitin gene in acute leukemic cells. Oncol Rep. 2017;37:3201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang C, Zhang X, Jiang L, Zhang L, Xiang M, Ren H. FoxM1 induced paclitaxel resistance via activation of the FoxM1/PHB1/RAF-MEK-ERK pathway and enhancement of the ABCA2 transporter. Mol Ther Oncolytics. 2019;14:196–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, et al. The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol. 2014;4:96.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen W, Qi J, Bao G, Wang T, Du CW, Wang MD. Emerging role of microRNA-27a in human malignant glioma cell survival via targeting of prohibitin. Mol Med Rep. 2015;12:1515–23.

    Article  CAS  PubMed  Google Scholar 

  112. Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, et al. MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1. BMC Cancer. 2017;17:750.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Qian X, Zhao P, Li W, Shi ZM, Wang L, Xu Q, et al. MicroRNA-26a promotes tumor growth and angiogenesis in glioma by directly targeting prohibitin. CNS Neurosci Ther. 2013;19:804–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chiu CF, Ho MY, Peng JM, Hung SW, Lee WH, Liang CM, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene. 2013;32:777–87.

    Article  CAS  PubMed  Google Scholar 

  115. Chiu CF, Peng JM, Hung SW, Liang CM, Liang SM. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts. Cancer Lett. 2012;320:205–14.

    Article  CAS  PubMed  Google Scholar 

  116. Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, et al. A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun. 2017;8:15427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Djehal A, Krayem M, Najem A, Hammoud H, Cresteil T, Nebigil CG, et al. Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. Eur J Med Chem. 2018;155:880–8.

    Article  CAS  PubMed  Google Scholar 

  118. Wu B, Chang N, Xi H, Xiong J, Zhou Y, Wu Y, et al. viaPHB2 promotes tumorigenesis RACK1 in non-small cell lung cancer. Theranostics. 2021;11:3150–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Qi Y, Chiu JF, Wang L, Kwong DL, He QY. Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics. 2005;5:2960–71.

    Article  CAS  PubMed  Google Scholar 

  120. He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 2004;4:3276–87.

    Article  CAS  PubMed  Google Scholar 

  121. Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, et al. The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci. 2003;18:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen D, Chen F, Lu X, Yang X, Xu Z, Pan J, et al. Identification of prohibitin as a potential biomarker for colorectal carcinoma based on proteomics technology. Int J Oncol. 2010;37:355–65.

    CAS  PubMed  Google Scholar 

  123. Hammoudi A, Song F, Reed KR, Jenkins RE, Meniel VS, Watson AJ, et al. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC). Biochem Biophys Res Commun. 2013;440:364–70.

    Article  CAS  PubMed  Google Scholar 

  124. Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, Giebel J, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008;266:171–85.

    Article  CAS  PubMed  Google Scholar 

  125. Alaiya AA, Al-Mohanna M, Aslam M, Shinwari Z, Al-Mansouri L, Al-Rodayan M, et al. Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol. 2011;38:1047–57.

    Article  CAS  PubMed  Google Scholar 

  126. Lim R, Lappas M, Ahmed N, Permezel M, Quinn MA, Rice GE. 2D-PAGE of ovarian cancer: analysis of soluble and insoluble fractions using medium-range immobilized pH gradients. Biochem Biophys Res Commun. 2011;406:408–13.

    Article  CAS  PubMed  Google Scholar 

  127. Srisomsap C, Subhasitanont P, Otto A, Mueller EC, Punyarit P, Wittmann-Liebold B, et al. Detection of cathepsin B up-regulation in neoplastic thyroid tissues by proteomic analysis. Proteomics. 2002;2:706–12.

    Article  CAS  PubMed  Google Scholar 

  128. Franzoni A, Dima M, D’Agostino M, Puppin C, Fabbro D, Loreto CD, et al. Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF(V600E) mutation. Thyroid. 2009;19:247–55.

    Article  CAS  PubMed  Google Scholar 

  129. Wang D, Lu YQ, Liu YF, Su SF, Li B. [Identification of new markers for childhood acute lymphoblastic leukemia by MALDI-TOF-MS]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2012;20:1365–9.

    CAS  PubMed  Google Scholar 

  130. Ren H, Du N, Liu G, Hu HT, Tian W, Deng ZP, et al. Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. World J Gastroenterol. 2006;12:2789–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang WB, Zhao YP, Liao Q, Zhang TP, Xu L, Wu YD. [Validation of candidate immunogenic membrane antigens of human pancreatic cancer screened by proteomics]. Zhonghua Wai Ke Za Zhi. 2012;50:260–3.

    PubMed  Google Scholar 

  132. Liao Q, Guo X, Li X, Xiong W, Li X, Yang J, et al. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev. 2013;22:68–76.

    Article  CAS  PubMed  Google Scholar 

  133. Guo WW, Chen LH, Yin W, Mo LX. Aberrant expression of prohibitin is related to prognosis of nasal extranodal natural killer/T cell lymphoma, nasal type. Oncol Res Treat. 2020;43:491–7.

    Article  CAS  PubMed  Google Scholar 

  134. Canevari RA, Marchi FA, Domingues MA, de Andrade VP, Caldeira JR, Verjovski-Almeida S, et al. Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma. Tumour Biol. 2016;37:13855–70.

    Article  CAS  PubMed  Google Scholar 

  135. Ren HZ, Wang JS, Pan GQ, Lv H, Wen JF, Luo GQ, et al. Comparative proteomic analysis of beta-catenin-mediated malignant progression of esophageal squamous cell carcinoma. Dis Esophagus. 2010;23:175–84.

    Article  PubMed  Google Scholar 

  136. Ren HZ, Wang JS, Wang P, Pan GQ, Wen JF, Fu H, et al. Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathol Oncol Res. 2010;16:515–22.

    Article  CAS  PubMed  Google Scholar 

  137. Lee Y, Lim H, Park J, Kim H, Kang M, Cho Y, et al. Overexpression of Prohibitin 2 protein is associated with adverse prognosis in cytogenetically normal acute myeloid leukemia. Ann Lab Med. 2022;42:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bentayeb H, Aitamer M, Petit B, Dubanet L, Elderwish S, Desaubry L, et al. Prohibitin (PHB) expression is associated with aggressiveness in DLBCL and flavagline-mediated inhibition of cytoplasmic PHB functions induces anti-tumor effects. J Exp Clin Cancer Res. 2019;38:450.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sirisena ND, Samaranayake N, Dissanayake VHW. Relative normalized luciferase activity for the recombinant vector constructs carrying the ancestral and variant alleles for XRCC2:rs3218550 and PHB:rs6917. BMC Res Notes. 2018;11:643.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sirisena ND, Adeyemo A, Kuruppu AI, Neththikumara N, Samaranayake N, Dissanayake VHW. Genetic determinants of sporadic breast cancer in Sri Lankan women. BMC Cancer. 2018;18:180.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Xiang F, Ni Z, Zhan Y, Xu J, Wu R, Kang X. Association of 758 G/A polymorphism of 3'untranslated region of prohibitin with risk of gastric cancer. J Clin Lab Anal. 2018;32:e22182.

    Article  PubMed  Google Scholar 

  142. Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A, et al. Inhibition of MYC translation through targeting of the newly identified PHB-eIF4F complex as a therapeutic strategy in CLL. Blood. 2023;141:3166–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem. 2020;203:112653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, et al. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol. 2012;19:1093–104.

    Article  CAS  PubMed  Google Scholar 

  145. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol. 2005;7:837–43.

    Article  CAS  PubMed  Google Scholar 

  146. Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, et al. The synthetic small molecule FL3 combats intestinal tumorigenesis via Axin1-mediated inhibition of wnt/beta-catenin signaling. Cancer Res. 2020;80:3519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yuan G, Chen X, Liu Z, Wei W, Shu Q, Abou-Hamdan H, et al. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45alpha pathway. J Exp Clin Cancer Res. 2018;37:21.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liu J, Zhang R, Su T, Zhou Q, Gao L, He Z, et al. Targeting PHB1 to inhibit castration-resistant prostate cancer progression in vitro and in vivo. J Exp Clin Cancer Res. 2023;42:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16:419–34.

    Article  CAS  PubMed  Google Scholar 

  150. Nunez-Vazquez S, Sanchez-Vera I, Saura-Esteller J, Cosialls AM, Noisier AFM, Albericio F, et al. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J. 2021;288:1271–85.

    Article  CAS  PubMed  Google Scholar 

  151. Jing GJ, Xu DH, Shi SL, Li QF, Wang SY, Wu FY, et al. Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells. World J Gastroenterol. 2010;16:2176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li CP, Huang JH, Chang AC, Hung YM, Lin CH, Chao Y, et al. A G-quadruplex ligand 3,3’-diethyloxadicarbocyanine iodide induces mitochondrion-mediated apoptosis but not decrease of telomerase activity in nasopharyngeal carcinoma NPC-TW01 cells. Pharm Res. 2004;21:93–100.

    Article  CAS  PubMed  Google Scholar 

  153. Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y, et al. Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. Biocell. 2012;36:113–20.

    CAS  PubMed  Google Scholar 

  154. Henrich S, Mactier S, Best G, Mulligan SP, Crossett B, Christopherson RI. Fludarabine nucleoside modulates nuclear “survival and death” proteins in resistant chronic lymphocytic leukemia cells. Nucleosides Nucleotides Nucleic Acids. 2011;30:1181–9.

    Article  CAS  PubMed  Google Scholar 

  155. Kosgodage US, Mould R, Henley AB, Nunn AV, Guy GW, Thomas EL, et al. Cannabidiol (CBD) is a novel inhibitor for exosome and microvesicle (EMV) release in cancer. Front Pharm. 2018;9:889.

    Article  Google Scholar 

  156. Cheng JY, Yang JB, Liu Y, Xu M, Huang YY, Zhang JJ, et al. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. Acta Pharm Sin. 2019;40:938–48.

    Article  CAS  Google Scholar 

  157. Klawitter J, Shokati T, Moll V, Christians U, Klawitter J. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010;12:R16.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Peng X, Mehta R, Wang S, Chellappan S, Mehta RG. Prohibitin is a novel target gene of vitamin D involved in its antiproliferative action in breast cancer cells. Cancer Res. 2006;66:7361–9.

    Article  CAS  PubMed  Google Scholar 

  159. Mooso B, Madhav A, Johnson S, Roy M, Moore ME, Moy C, et al. Androgen Receptor regulation of Vitamin D receptor in response of castration-resistant prostate cancer cells to 1alpha-Hydroxyvitamin D5 - a calcitriol analog. Genes Cancer. 2010;1:927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, et al. Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. J Biol Chem. 2018;293:8285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Najem A, Krayem M, Sabbah S, Pesetti M, Journe F, Awada A. et al. Targeting prohibitins to inhibit melanoma growth and overcome resistance to targeted therapies. Cells. 1855;2023:12.

    Google Scholar 

  162. Kovach AR, Oristian KM, Kirsch DG, Bentley RC, Cheng C, Chen X, et al. Identification and targeting of a HES1-YAP1-CDKN1C functional interaction in fusion-negative rhabdomyosarcoma. Mol Oncol. 2022;16:3587–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yang W, Mu B, You J, Tian C, Bin H, Xu Z, et al. Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nat Commun. 2022;13:7473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int. 2024;24:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sehrawat U, Pokhriyal R, Gupta AK, Hariprasad R, Khan MI, Gupta D, et al. Comparative proteomic analysis of advanced ovarian cancer tissue to identify potential biomarkers of responders and nonresponders to first-line chemotherapy of carboplatin and paclitaxel. Biomark Cancer. 2016;8:43–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR, et al. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA. 2010;107:2503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dong P, Jiang L, Liu J, Wu Z, Guo S, Zhang Z, et al. Induction of paclitaxel resistance by ERalpha mediated prohibitin mitochondrial-nuclear shuttling. PLoS One. 2013;8:e83519.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kong B, Wang Q, Fung E, Xue K, Tsang BK. p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers. J Biol Chem. 2014;289:27134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Keenan J, Murphy L, Henry M, Meleady P, Clynes M. Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line. Proteomics. 2009;9:1556–66.

    Article  CAS  PubMed  Google Scholar 

  170. Yang H, Fan S, An Y, Wang X, Pan Y, Xiaokaiti Y, et al. Bisdemethoxycurcumin exerts pro-apoptotic effects in human pancreatic adenocarcinoma cells through mitochondrial dysfunction and a GRP78-dependent pathway. Oncotarget. 2016;7:83641–56.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kimura K, Wada A, Ueta M, Ogata A, Tanaka S, Sakai A, et al. Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. Int J Oncol. 2010;37:1271–8.

    CAS  PubMed  Google Scholar 

  172. Huang H, Zhang S, Li Y, Liu Z, Mi L, Cai Y, et al. Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance. Nat Commun. 2021;12:3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zeng GQ, Yi H, Li XH, Shi HY, Li C, Li MY, et al. Identification of the proteins related to p53-mediated radioresponse in nasopharyngeal carcinoma by proteomic analysis. J Proteom. 2011;74:2723–33.

    Article  CAS  Google Scholar 

  174. Tang J, Cao L, Yi H, Tang C. [Preliminary study of the prohibitin protein and paclitaxel resistance in ovarian cancer]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2012;37:1221–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Mou Peng for his technique support.

Funding

This study was supported by grants from Natural Science Foundation of Hunan Province (Grant No.2022JJ40708) and from Xiaoxiang Cancer Clinical Research Public Welfare Project (Grant No. P049-001) to YYT. The funders play no role in paper design, data collection, data analysis, interpretation, and writing of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Gao: Writing–original draft, Writing—review & editing, Visualization, Conceptualization. Tang: Writing—review & editing, Conceptualization, Funding acquisition. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yuanyuan Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Tang, Y. Emerging roles of prohibitins in cancer: an update. Cancer Gene Ther 32, 357–370 (2025). https://doi.org/10.1038/s41417-025-00883-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00883-y

Search

Quick links