Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TOM1L1 mediated the sort of tumor suppressive miR-378a-3p into exosomes and the excretion out of cells to promote ESCC progression

Abstract

Exosomes mediate cell-to-cell communication by releasing miRNAs, mRNA, etc. However, there is little research about the effects on the donor cells after miRNAs are excreted out of cells through exosomes. Here, we found that miR-378a-3p was specifically enriched in exosomes and inhibited cell proliferation, migration, invasion, and colony formation in ESCC. In addition, miR-378a-3p was sorted into exosomes through TOM1L1 and extracted mainly out of ESCC cells. Overexpression of TOM1L1 led to tumor suppressor miR-378a-3p accumulation in exosomes rather than in donor cells, promoting ESCC progression. Moreover, miR-378a-3p targets DYRK1A that directly binds to NPM1 and the phosphorylation state of NPM1 at Ser125 to suppress tumor growth. Taken together, our findings demonstrate that TOM1L1-mediated the tumor suppressor miR-378a-3p into exosomes and excreted out of cells to promote tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-378a-3p is secreted outside of tumor cells.
Fig. 2: miR-378a-3p suppressed ESCC cell migration and invasion in vitro.
Fig. 3: miR-378a-3p was sorted into exosomes.
Fig. 4: TOM1L1 regulates miR-378a-3p sorting into exosomes.
Fig. 5: TOM1L1-mediated exosome sorting of miR-378a-3p promotes tumor progression.
Fig. 6: DYRK1A is a critical downstream target of miR-378a-3p in ESCC cells.
Fig. 7: DYRK1A physically interacts with NPM1 and phosphorylates it at Ser125.
Fig. 8: The mechanism of miR-378a-3p sorted into exosomes by TOM1L1 in ESCC.

Similar content being viewed by others

Data availability

The data generated in this study are available upon request from the corresponding author.

References

  1. Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, et al. Epidemiology of esophageal cancer in Japan and China. J Epidemiol. 2013;23:233–42.

    Article  PubMed  Google Scholar 

  2. Wang T, Liu NS, Seet LF, Hong W. The emerging role of VHS domain-containing Tom1, Tom1L1 and Tom1L2 in membrane trafficking. Traffic. 2010;11:1119–28.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, et al. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet. 2015;96:597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005;113:456–63.

    Article  CAS  PubMed  Google Scholar 

  5. Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17:170.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qazi REM, Sajid Z, Zhao C, Hussain I, Iftikhar F, Jameel M, et al. Lyophilization based isolation of exosomes. Int J Mol Sci. 2023;24:10477.

  7. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14:1036–45.

    Article  CAS  PubMed  Google Scholar 

  8. Chagraoui J, Girard S, Spinella JF, Simon L, Bonneil E, Mayotte N, et al. UM171 preserves epigenetic marks that are reduced in ex vivo culture of human HSCs via potentiation of the CLR3-KBTBD4 complex. Cell Stem Cell. 2021;28:48–62.e6.

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Liu H, Wu Q, Liu Y, Yan Z, Chen G, et al. miR-451a was selectively sorted into exosomes and promoted the progression of esophageal squamous cell carcinoma through CAB39. Cancer Gene Ther. 2024;31:1060–9.

    Article  CAS  PubMed  Google Scholar 

  10. Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: formation-function-future. Int J Mol Sci. 2016;17:2028.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hinds PW, Weinberg RA. Tumor suppressor genes. Curr Opin Genet Dev. 1994;4:135–41.

    Article  CAS  PubMed  Google Scholar 

  14. Yao Y, Bellon M, Shelton SN, Nicot C. Tumor suppressors p53, p63taα, p63tay, p73α, and p73β use distinct pathways to repress telomerase expression. J Biol Chem. 2012;287:20737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.

    Article  CAS  PubMed  Google Scholar 

  16. Chang Y, Jin H, Cui Y, Yang F, Chen K, Kuang W, et al. PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. Clin Transl Med. 2024;14:e1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JW, Moon SW, Mo HY, Son HJ, Choi EJ, Yoo NJ, et al. Concurrent inactivating mutations and expression losses of RGS2, HNF1a, and CAPN12 candidate tumor suppressor genes in colon cancers. Pathol Res Pract. 2023;241:154288.

    Article  CAS  PubMed  Google Scholar 

  18. Cojocaru E, Lozneanu L, Giuşcă SE, Căruntu ID, Danciu M. Renal carcinogenesis—insights into signaling pathways. Rom J Morphol Embryol. 2015;56:15–9.

    PubMed  Google Scholar 

  19. Kobayashi H. [The cell cycle and the tumor suppressor genes]. Rinsho Byori. 1996;44:3–11.

    CAS  PubMed  Google Scholar 

  20. Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol. 2017;7:170152.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li M, Xu H, Qi Y, Pan Z, Li B, Gao Z, et al. Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene. 2022;41:4618–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, et al. Secreted ligands of the NK cell receptor NKp30: B7-H6 is in contrast to BAG6 only marginally released via extracellular vesicles. Int J Mol Sci. 2021;22:2189.

  24. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7:986–95.

    Article  CAS  PubMed  Google Scholar 

  25. Briand J, Garnier D, Nadaradjane A, Clément-Colmou K, Potiron V, Supiot S, et al. Radiotherapy-induced overexpression of exosomal miRNA-378a-3p in cancer cells limits natural killer cells cytotoxicity. Epigenomics. 2020;12:397–408.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Q, Zhao S, Shi Z, Cao L, Liu J, Pan T, et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J Exp Clin Cancer Res. 2021;40:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Zhao Y, Kong P, Liu Y, Huang J, Xu E, et al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell. 2023;41:181–195.e9.

    Article  CAS  PubMed  Google Scholar 

  28. Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the implication of miR-378a in cancers. Technol Cancer Res Treat. 2022;21:15330338221134385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu M, Yang J, Xu Y, Liu J. MDH1 and MDH2 promote cell viability of primary AT2 cells by increasing glucose uptake. Comput Math Methods Med. 2022;2022:2023500.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Miao L, Xin X, Zhang J, Yang S, Miao M, et al. Underexpressed CNDP2 participates in gastric cancer growth inhibition through activating the MAPK signaling pathway. Mol Med. 2014;20:17–28.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Ma Y, He HW, Wang JP, Jiang JD, Shao RG. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells. Autophagy. 2015;11:2323–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan Q, Yin L, He J, Zeng Q, Liang Y, Shen Y, et al. Metabolism of asparagine in the physiological state and cancer. Cell Commun Signal. 2024;22:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, et al. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol. 2024;15:1386929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jabbour E, Cortes J, O’Brien S, Giles F, Kantarjian H. New targeted therapies for chronic myelogenous leukemia: opportunities to overcome imatinib resistance. Semin Hematol. 2007;44:S25–31.

    Article  CAS  PubMed  Google Scholar 

  35. Chevalier C, Roche S, Bénistant C. Vesicular trafficking regulators are new players in breast cancer progression: role of TOM1L1 in ERBB2-dependent invasion. Mol Cell Oncol. 2016;3:e1182241.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, et al. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun. 2016;7:10765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yanagida-Ishizaki Y, Takei T, Ishizaki R, Imakagura H, Takahashi S, Shin HW, et al. Recruitment of Tom1L1/Srcasm to endosomes and the midbody by Tsg101. Cell Struct Funct. 2008;33:91–100.

    Article  CAS  PubMed  Google Scholar 

  38. Jia S, Meng A. Tob genes in development and homeostasis. Dev Dyn. 2007;236:913–21.

    Article  CAS  PubMed  Google Scholar 

  39. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91:119–49.

    Article  CAS  PubMed  Google Scholar 

  40. Wang QC, Zheng Q, Tan H, Zhang B, Li X, Yang Y, et al. TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell. 2016;165:1454–66.

    Article  CAS  PubMed  Google Scholar 

  41. Sun J, Sheng W, Ma Y, Dong M. Potential role of Musashi-2 RNA-binding protein in cancer EMT. Oncotargets Ther. 2021;14:1969–80.

    Article  Google Scholar 

  42. Rudack T, Jenrich S, Brucker S, Vetter IR, Gerwert K, Kötting C. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of x-ray crystallography, experimental, and theoretical IR spectroscopy. J Biol Chem. 2015;290:24079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deboever E, Fistrovich A, Hulme C, Dunckley T. The omnipresence of DYRK1A in human diseases. Int J Mol Sci. 2022;23:9355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sebastiani G, Almeida-Toledano L, Serra-Delgado M, Navarro-Tapia E, Sailer S, Valverde O, et al. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients. 2021;13:2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giraud F, Pereira E, Anizon F, Moreau P. Recent advances in pain management: relevant protein kinases and their inhibitors. Molecules. 2021;26:2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo X, Zhang D, Zhang X, Jiang J, Xue P, Wu C, et al. Dyrk1A promotes the proliferation, migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis via down-regulating Spry2 and activating the ERK MAPK pathway. Tissue Cell. 2018;55:63–70.

    Article  CAS  PubMed  Google Scholar 

  47. Ionescu A, Dufrasne F, Gelbcke M, Jabin I, Kiss R, Lamoral-Theys D. DYRK1A kinase inhibitors with emphasis on cancer. Mini Rev Med Chem. 2012;12:1315–29.

    CAS  PubMed  Google Scholar 

  48. Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, et al. Function and inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol. 2023;212:115521.

    Article  CAS  PubMed  Google Scholar 

  49. Becker W, Joost HG. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol. 1999;62:1–17.

    CAS  PubMed  Google Scholar 

  50. Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, et al. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure. 2013;21:986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murano K, Okuwaki M, Hisaoka M, Nagata K. Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol. 2008;28:3114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okuwaki M. The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem. 2008;143:441–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lim MJ, Wang XW. Nucleophosmin and human cancer. Cancer Detect Prev. 2006;30:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Enomoto T, Lindström MS, Jin A, Ke H, Zhang Y. Essential role of the B23/NPM core domain in regulating ARF binding and B23 stability. J Biol Chem. 2006;281:18463–72.

    Article  CAS  PubMed  Google Scholar 

  55. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  57. Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, et al. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol. 2023;13:1324819.

    Article  CAS  PubMed  Google Scholar 

  58. Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31:3584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Vandenboom TG 2nd, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335:201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qiu S, Xie L, Lu C, Gu C, Xia Y, Lv J, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin Cancer Res. 2022;41:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25:356.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  Google Scholar 

  65. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Shanxi Medical University Key Laboratory of the Ministry of Education for providing us with the Cell physiology equipment platform.

Funding

This work was supported by the Shanxi Province Higher Education “Billion Project” Science and Technology Guidance Project(BYJL027); the Fundamental Research Program of Shanxi Province (20210302123292); the Central Guidance on Local Science and Technology Development Fund of Shanxi Province (YDZJSX2021A018); the Shenzhen Project of Science and Technology (JCYJ20190813094203600).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolong Cheng and Ting Yan: Formal analysis, Funding acquisition, Project administration; Lu Wang: Data curation, Validation, Writing—original draft; Huijuan Liu, Guohui Chen and Qinglu Wu: Supervision, Visualization, revised and edited the manuscript; Songrui Xu, Qichao Zhou, Yadong Zhao, and Qiaorong Wang: Formal analysis, Investigation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ting Yan or Xiaolong Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, H., Chen, G. et al. TOM1L1 mediated the sort of tumor suppressive miR-378a-3p into exosomes and the excretion out of cells to promote ESCC progression. Cancer Gene Ther 32, 507–520 (2025). https://doi.org/10.1038/s41417-025-00889-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00889-6

Search

Quick links