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ARL6IP5 in cancers: bidirectional function and therapeutic value
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ARL6IP5 (ADP-ribosylation-like factor 6 interacting protein 5) plays an important role in a variety of physiological or pathological
processes, including in cancers. However, the biological roles of ARL6IP5 in cancers are controversial. In this mini-review, we
summarized the current understanding on the role of ARL6IP5 in cancers, particularly in the progression of chronic hepatitis virus-
related hepatocellular carcinoma, as well as the potential values of ARL6IP5 in cancer therapy.

Cancer Gene Therapy (2025) 32:744–749; https://doi.org/10.1038/s41417-025-00903-x

INTRODUCTION
Cancer is a leading cause of death worldwide, creating a
significant health, social, and economic burdens [1–3]. Cancer-
related deaths have increased by 25.4% worldwide per year
between 2007 and 2017 [4]. The absolute disability-adjusted life
years of cancer have increased by 20.9% during 2010 to 2019 [5].
Understanding the molecular pathogenesis of cancers is a pre-
requisite for developing more efficient anti-cancer therapies.
Accumulation of multiple genetic alterations and the complex

interactions between oncogenes and tumor suppressor genes
play important roles in cancer development [6–9]. Identification of
key driver genes for cancer formation can facilitate the develop-
ment of targeted therapies.
ADP-ribosylation-like factor 6 interacting protein 5 (ARL6IP5,

also known as JWA, DER11, GTRAP3-18, or HSPC127) was initially
cloned from all-trans-retinoic acid (ATRA)-treated human bron-
chial epithelial cells, but was later found to be ubiquitously
expressed in most of the human tissues [10]. The gene encoding
ARL6IP5 is located at chromosome 3p, and its protein is localized
to endoplasmic reticulum (ER) and Golgi apparatus. ARL6IP5 is a
homolog of Drosophila PRAF2, a small protein from the prenylated
Rab acceptor family that plays a role in ER-to-Golgi transport [11].
The rodent homologs of ARL6IP5, addicsin in mice and glutamate
transporter-associated protein 3-18 (GTRAP3-18) in rats, are
abundantly present in the brain and play important roles in
neuronal differentiation and glutathione regulation [12–16].
ARL6IP5 is involved in the regulation of multiple physiological

and pathological processes, such as glutamate transportation,
oxidative stress, autophagy, and DNA damage repair [17–22].
Publicly available Gene Expression Profiling Interactive Analysis
(GEPIA) dataset (gepia.cancer-pku.cn) reveals an overexpression of
ARL6IP5 in the cancer tissues originating from lymph, brain,
kidney, blood, pancreas, skin, and thymus, relative to their
respective normal tissues. However, in other cancer tissues
including those from bladder cancer, squamous carcinoma of
the cervix, squamous cell lung carcinoma, endometrial cancer, and

sarcoma of the uterus, a down-regulation of ARL6IP5 was
observed. These data indicate that the roles of ARL6IP5 in cancers
may be bidirectional and context-dependent.
As shown in Table 1, the role of ARL6IP5 in human cancers is

mixed and contradictory: it functions as a tumor suppressor in
most cancers, but in some cancers, it acts as an oncogene. The
biological functions of ARL6IP5 may depend on many factors such
as tumor microenvironment and etiological factors. For example,
in liver cancer, ARL6IP5 is more involved in the pathogenesis of
hepatitis c virus (HCV)-related cancers.
In this article, we aim to provide an overview of the consensus

and controversies of the roles of ARL6IP5 in human cancers. The
review provides valuable insights in the search for novel
therapeutic strategies for cancers.

ARL6IP5 PLAYS BIDIRECTIONAL ROLES IN DIFFERENT
CANCERS
ARL6IP5 is expressed in many human tissues where it functions
as a tumor suppressor gene. For instance, functional studies
have shown that down-regulation of ARL6IP5 in hepatocellular
carcinoma (HCC) and non-small cell lung cancer can promote
tumor invasion and predict a poor prognosis [23, 24]. In gastric
cancer, ARL6IP5 deficiency together with p53 mutation
promotes tumor invasion and metastasis [25]. Combination of
murine double minute 2 (MDM2, a negative regulator for p53)
overexpression and ARL6IP5 down-regulation led to a shorter
overall survival in patients with gastric cancer [26]. Mechanistic
studies have shown that ARL6IP5 insufficiency and up-
regulation of matrix metalloproteinase-2 (MMP-2) can increase
tumor micro vessel density in gastric cancer [27]. Thus, ARL6IP5
has been regarded as an effective biomarker for gastric cancer
[28]. The tumor suppressor roles of ARL6IP5 have also
been observed in other common cancers, including esophagus,
liver cancer, breast cancer, cervical cancer, and skin cancer
[29–34].
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However, ARL6IP5 also functions as an oncogene in some
cancers [35, 36]. Three novel functional genetic polymorphisms of
ARL6IP5, namely -76GC, 454CA, and 723TG, have been identified
to contribute to the development of bladder cancer [37]. The
functional variations of the -76C allele are correlated to the
significantly increased odds of leukemia, whereas those of the
723 G allele are associated with markedly decreased odds of
leukemia [38]. A meta-analysis showed that increased expression
of ARL6IP5 is related to worse overall survival and event-free
survival of leukemia patients, and ARL6IP5 overexpression is an
independent risk factor of poor survival in leukemia patients [39].
ARL6IP5 overexpression is also strongly associated to Burkitt
lymphoma progression [40]. The mechanisms of how ARL6IP5
exerts a tumor suppressor or oncogenic effects in cancers will be
further discussed below.

FUNCTIONAL MECHANISMS AND REGULATORY NETWORK OF
ARL6IP5
The differential biological functions of ARL6IP5 across different
cancers may be attributed to multifactorial mechanisms [41, 42].
Under the physiological conditions, GTRAP3-18 (one of the
homologous proteins of ARL6IP5) was found to suppress
excitatory amino-acid carrier 1 (EAAC1)-mediated glutamate
transport by impairing its affinity to the substrate, reducing the
L-glutathione level at the plasma membrane, or delaying the exit

of EAAC1 from the endoplasmic reticulum [13, 17, 18, 43, 44].
GTRAP3-18 was also shown to negatively regulate excitatory
amino acid transporter 3 (EAAT3) functions. ARL6IP5 can promote
apoptosis of mouse embryonic cells, which is directly targeted by
CCAAT/enhancer binding protein (C/EBP) alpha. C/EBP alpha can
bind and activate the ARL6IP5 promoter [45]. In the early secretory
pathway, ARL6IP5 inhibits Rab1, thus reducing the transportation
efficiency of ER-to-Golgi [46]. Under the pathological conditions,
ARL6IP5 plays important role in oxidative stress. It was found that
ARL6IP5 is an important signaling molecule in hydrogen-peroxide-
induced cell injury [47]. It enhances intracellular defense mechan-
isms against oxidative stress in myelogenous leukemia cells,
participates in the signaling pathways of DNA damage and repair,
especially excision repair [48, 49]. In breast cancer, ARL6IP5 is
involved in the estrogen receptor-related signal transduction
pathways [21].
Mitogen-activated protein kinases (MAPK) signaling pathway is

one of the most ancient signaling pathways that participate in
many physiological processes. It converts extracellular stimuli into
cellular responses, which can be divided into seven groups, and
the most extensively studied mammalian MAPK groups are ERK1/
2, JNK, and p38 isoforms [50, 51]. In some cancers, ARL6IP5 exerts
its roles through regulating the activity of MAPKs. For example,
Chen H et al. showed that ARL6IP5 inhibits tumor cellular
migration via activating MAPK cascades and rearranging the
F-actin cytoskeleton [29]. ARL6IP5 up-regulates the activity of E2F

Table 1. Representative studies on the roles of ARL6IP5 in cancers.

Author Year Origin of cancer Relative Molecules Functional Role References

Huang S 2006 Blood – Tumor-suppressing [42]

Chen X 2015 Breast – Tumor-suppressing [56]

Xu L 2018 Breast CXCR4 Tumor-suppressing [30]

Zhai Z 2022 Breast JAC1 YY1 Tumor-suppressing [55]

Mao W 2006 Cervix ATRA Tumor-suppressing [31]

Lin J 2014 Esophagus – Tumor-Suppressing [34]

Chen H 2007 Liver F-actin Tumor-suppressing [29]

Wu X 2014 Liver FAK RhoA MMP-2 Tumor-suppressing [23]

Li Y 2015 Lung EGCG topoisomerase IIα Tumor-suppressing [24]

Kim J 2022 Ovary – Tumor-suppressing [64]

Wu Y 2014 Pancreas – Tumor-suppressing [54]

Lu J 2013 Skin ING4 Tumor-Suppressing [33]

Liu X 2012 Stomach p53 Tumor-suppressing [25]

Wang S 2012 Stomach XRCC1 Tumor-suppressing [76]

Ye Y 2013 Stomach MDM2 Tumor-suppressing [26]

Lu J 2013 Stomach ILK Tumor-suppressing [32]

Chen Y 2014 Stomach MMP-2 Tumor-Suppressing [27]

Xu W 2014 Stomach CK2 Tumor-suppressing [65]

Qiu D 2018 Stomach RNF185 Tumor-suppressing [66]

Wang W 2020 Stomach XCCR1 Tumor-suppressing [28]

Li C 2007 Bladder – Oncogenic [37]

Shen Q 2005 Blood – Oncogenic [41]

Zhu T 2006 Blood p53 Oncogenic [48]

Li Z 2013 Blood – Oncogenic [39]

Chen R 2005 Breast – Oncogenic [49]

Wang W 2013 Lymph – Oncogenic [28]

Romanuik T 2009 Prostate – Oncogenic [35]

Cunha I 2010 Prostate – Oncogenic [36]

Gong Z 2012 Skin Elk1 Oncogenic [53]

Shen Q 2007 Blood – Bidirectional [38]
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transcription factor 1 (E2F1) via activating MAPK signaling
pathway and subsequently the activation of X-ray repair cross
complementing 1 (XRCC1). Additionally, ARL6IP5 protects the
XRCC1 protein from ubiquitination and degradation by protea-
somes [52]. In several cancers, such as skin cancer, pancreatic
cancer, and breast cancer, the tumor suppressive role of ARL6IP5
was found to be mediated via its inhibitory effects on MAPK
signaling pathway and JNK pathways [53–56].
Human NF-κB repressing factor (NKRF) is a negative regulator

for NF-κB. Using a genome-wide expression profile analysis, Sun Y
et al. validated that knockdown of NKRF in HEK293 cells led to a
significant up-regulation of ARL6IP5, suggesting ARL6IP5 may play
an important role in the NF-κB signaling cascade [57] (Fig. 1).
It is well-known that PI3K-Akt-mTOR signaling pathway is

closely related to cancers. In FAK-PI3K-Akt-mTOR cascade, the
deficiency of ARL6IP5 can increase the number of neurons and
enhance the long-term potentiation induction in the hippocampal
dentate gyrus, thereby leading to spatial cognitive potentiation
[58]. Through this signaling pathway, ARL6IP5 deletion in
astrocytes exacerbates dopaminergic neurodegeneration by
decreasing glutamate transporters in mice [59]. From these
findings, we speculate that ARL6IP5 may regulate cancers via
PI3K-Akt-mTOR signaling pathway.

THERAPEUTIC POTENTIALS OF ARL6IP5 IN CANCERS
The potential application of ARL6IP5 as a therapeutic target in
cancer therapy has been reported. Studies on N-methyl-N’-nitro-N-
nitrosoguanidine (MNNG) have inspired researchers to harness the
tumor-suppressing effects of ARL6IP5 to conquer cancers. MNNG
treatment can activate nuclear transcription factor binding to the
ARL6IP5 proximal promoter, thereby triggering apoptosis [60].
Arsenic trioxide is a standard therapy for refractory acute
promyelocytic leukemia, and it can induce apoptosis in a variety
of malignant cells. Arsenic trioxide up-regulates the expression of
ARL6IP5 by stimulating the production of reactive oxygen species
in a dose-dependent manner, and ARL6IP5 induces apoptosis and
loss of mitochondrial transmembrane potential in breast cancer
cells [61]. Arsenic trioxide-induced apoptosis depends in part on
tubulin polymerization. The activation of p38 MAPK contributes to

ARL6IP5-promoted tubulin polymerization which also improves the
sensitivity of breast cancer cells to arsenic trioxide [62]. Cadmium
chloride treatment can also promote apoptosis, which is attributed
to the up-regulation of ARL6IP5 and its promoter activity [63]. In
ovarian cancer, ARL6IP5 appeared to exert a tumor suppressive
role, and as such, recombinant ARL6IP5 protein was demonstrated
to sensitize the ovarian cancer cells to cisplatin [64]. Similarly,
ARL6IP5 was shown to reverse cisplatin-resistance in gastric cancer
[65]. Other studies have shown that targeting the upstream
molecules of ARL6IP5 maybe an effective cancer therapeutic
strategy. In this regard, inhibition of ring finger protein 185
(RNF185) was found to inhibit the metastasis of gastric cancer [66].
However, because ARL6IP5 allows cells to escape from DNA

damage, strategies enhancing sensitivity of tumors to antitumor
drugs by downregulating ARL6IP5 have been reported [52]. In this
regard, inhibition of ARL6IP5 may enhance the sensitivity of
certain anticancer agents. For example, inhibiting ARL6IP5-XRCC1-
mediated DNA single-strand-break repair (SSBR) could reverse the
resistance of ovarian cancer cells to Cx-platin-Cl and Cx-DN604-Cl
(two Pt(IV) prodrugs), and restore the sensitivity of ovarian cancer
cells to cisplatin [67]. Cis-wog, a cytotoxic agent, has been shown
to improve the antitumor activity of its corresponding Pt(II)-based
drugs and reverse resistance to by inhibiting ARL6IP5-mediated
SSBR in lung adenocarcinoma cells [68].
Considering the controversial expression patterns and biologi-

cal functions of ARL6IP5 across different cancers, the therapeutic
potential of this gene needs more extensive studies. ARL6IP5 has
tumor-suppressing effects, such as promoting apoptosis. ARL6IP5
can also make tumor cells resistant to drugs via promoting SSBR.
Therefore, both up-regulation and down-regulation of ARL6IP5
may be utilized as strategies in cancer therapy (Table 2). At
present, researchers have taken the first step toward specifying
the cancer therapeutic strategies surrounding ARL6IP5. Extensive
research is needed to clarify the context-dependent role of
ARL6IP5 in different cancers.

ARL6IP5 PLAYS AN IMPORTANT ROLE IN HCV-RELATED HCC
Expression profiling shows that most of cancers, including HCC,
express high level of ARL6IP5. However, the functions of ARL6IP5

Fig. 1 Regulatory network of ARL6IP5 in human cancer.

Table 2. Strategies using ARL6IP5 as a therapeutic target.

Materials Regulation Mechanism Ref.

arsenic trioxide upregulation inducing apoptosis and loss of mitochondrial transmembrane potential,
promoting tubulin polymerization

[61, 62]

recombinant ARL6IP5
protein

upregulation suppressing DNA damage repair [64]

Cx-platin-Cl/Cx-DN604-Cl downregulation suppressing DNA damage repair [67]

cis-wog downregulation suppressing DNA damage repair [68]
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are likely to be cell- and context-dependent. Moreover, microbiota
can modulate cancer development by shaping the immune
system [58]. For instance, persistent Helicobacter pylori infection is
significantly associated with gastric cancer and lymphoma.
Hepatitis B (HBV) or C (HCV) viruses are known risk factors for
HCC [69]. HCV can synergistically promote HCC development with
other risk factors such as alcohol, HBV X protein, and aflatoxin B1
[70]. We previously showed that ARL6IP5 is involved in the
pathogenesis of HCV-related liver cancer, and this was supported
by other studies [17, 71, 72]. In HCV-infected liver, ARL6IP5
increases the levels of oxidative stress markers such as 8-oxo-dG,
4-hydroxynonenal, and malondialdehyde [10, 72–74].
It is also noteworthy that ARL6IP5 also acts as a tumor

suppressor in HCC. ARL6IP5 negatively regulates MMP-2 and
FAK, which are factors facilitating cell attachment, motility, and
invasion [23]. The tumor suppressive role of ARL6IP5 in liver cancer
has also been reported, where ARL6IP5 was shown to inhibit HCC
growth by inhibiting MAPK signaling pathway [75].
These studies indicate that there is a complex regulatory

network among HCV, ARL6IP5 and HCC (Fig. 2). First, ARL6IP5
inhibits the development of HCC by inhibiting MMP-2, FAK and
MAPK signaling pathway. However, ARL6IP5 can promote HCV
replication by inhibiting EAAC1, and thus promote HCC. ARL6IP5
also enhances oxidative stress in HCV-infected liver, thereby
increasing the risk of HCC.
It is likely that ARL6IP5 may play different or even conflicting

roles in HCC under different microenvironments. More studies are
needed to elucidate the role of ARL6IP5 and its therapeutic
potential in HCC.

SUMMARY AND CONCLUSIONS
ARL6IP5 is abnormally expressed at different levels across different
human cancers, hence, its biological role in different cancers may
vary. The complex nature of ARL6IP5 is also reflected in the fact
that it may exert both tumor-suppressing and oncogenic roles in
the same cancer type. The biological functions of ARL6IP5 cannot
be deduced based on its expression level. For instance, in gastric
cancer, ARL6IP5 is significantly downregulated in cancerous
tissues compared to matched non-cancerous mucosa. Despite
this down-regulation, conditional ARL6IP5-knockout mice do not
show spontaneous tumor formation [76]. This suggests that the
biological function of ARL6IP5 in a given cancer type may be
highly dependent on the tumor microenvironment, emphasizing
its complex, context-dependent roles in cancer progression. As

such, developing ARL6IP5 into a therapeutic target is likely
premature. Further research is essential to unravel the precise
mechanisms by which ARL6IP5 interacts with other molecules,
signaling pathways, and tumor microenvironment. Understanding
how ARL6IP5 influences tumorigenesis in different contexts will be
critical for developing new, safe, and effective therapeutic
strategies.

FUTURE PERSPECTIVES
Studies on the roles of ARL6IP5 in cancers are still scarce, and the
existing data do not entirely reveal the functional mechanisms
and regulatory network of ARL6IP5. The dual role of ARL6IP5 in
cancers implies that the biological roles of ARL6IP5 in different
cancers may be context-dependent, and tumor microenviron-
ments may be an important contributor therein. In liver cancer in
particular, considering the potential importance of ARL6IP5 in the
hepatitis-related HCC, and HBV and HCV are still major causes for
HCC (currently worldwide, approximately 60% of new HCC cases
can be attributed to chronic HBV infection) [77–80], further studies
on the precise roles of ARL6IP5 in the pathogenesis of liver cancer
are warranted.
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