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Recent advancements in ovarian cancer treatment, particularly with PARP inhibitors, have markedly enhanced the recurrence-free
interval, shifting the treatment paradigm and increasing treatment success in patients with BRCA mutations or HRD (homologous
recombination deficiency). However, a significant proportion of cases experience relapse, resulting in poorer long-term survival
rates when compared to other female cancers, such as breast cancer. This review explores the potential of adeno-associated virus
(AAV) vectors for gene therapy in ovarian cancer and examines rational gene therapy strategies by categorizing them based on
target cells and target genes to determine the most effective approach for ovarian cancer treatment. Specifically, it examines
strategies such as anti-angiogenesis and immune modulation, highlighting the strategy of gene supplementation to hinder ovarian
cancer progression. Innovations in AAV capsid design now allow for targeted delivery, focusing on ovarian cancer stem cells (CSCs)
identified by specific markers. Additionally, leveraging DNA sequencing technologies enhances the identification and incorporation
of therapeutic genes into AAV vectors, promising new avenues for ovarian cancer gene therapy.
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INTRODUCTION
Globally, ovarian cancer is the eighth most common cancer in
women, accounting for an estimated 3.7% of cases and 4.7% of
cancer deaths in 2020 [1]. It is the leading cause of gynecological
cancer-related deaths and the second most common gynecologic
cancer [2]. Over 90% of ovarian cancers are epithelial ovarian
cancers (EOC), with high-grade serous ovarian cancer (HGSOC)
being the predominant subtype [3] (Hereafter, these will be
referred to as ovarian cancer). Most ovarian cancers (75%) are
diagnosed at an advanced stage (III or IV) and initially respond well
to standard treatment (platinum-based chemotherapy and
cytoreductive surgery) with a response rate of over 80% [4].
However, the recurrence rate is nearly 80% of advanced ovarian
cancers, with progressively shorter progression-free intervals and
repeated chemotherapy cycles [5]. Consequently, the 5-year
survival rate is 26% for stage III and 14% for stage IV [6]
(Fig. 1a). Treatment following recurrence is primarily ineffective,
with a median survival time of only 2 years, making this disease
essentially lethal [7].
Gene therapy encompasses the delivery of genes (DNA or RNA)

to patients, aiming to inhibit the expression of oncogenes (gene
silencing), restore mutated-tumor suppressor genes with normal
genes (gene restoration), provide therapeutic genes to target cells
(gene supplementation) [8]. Initially, research primarily concen-
trated on treating hereditary diseases with well-defined causes.
However, current investigations have expanded to include a
variety of diseases, such as neurodegenerative diseases [9],
rheumatoid arthritis [10], cardiovascular diseases [11], infectious
diseases [12], and aging-related diseases [13]. Moreover, the
expanded understanding of genes implicated in cancer formation,
growth, and metastasis has stimulated research [14] and clinical

investigations [15] into cancer gene therapy, leading to notable
advancements in the field.
For cancer gene therapy, two distinct groups of delivery

vehicles exist viral and non-viral vectors. While both vectors have
their advantages and limitations, the central challenge of vectors
for cancer gene therapy is achieving efficient and safe gene
delivery. Non-viral vectors include carriers such as lipid nanopar-
ticles (LNPs), cationic liposomes, peptides, and cationic polymers
like polyethyleneimine (PEI) [16]. Although non-viral vectors often
face limitations in tumor-targeting specificity due to their
relatively simple structures [17], several studies have demon-
strated tissue-specific delivery [18]. Furthermore, similar to viral
vectors, non-viral vectors can be functionalized with biomolecules
(e.g., peptides, antibodies, or aptamers) to enhance their targeting
ability and therapeutic efficacy. These advantages, however, are
often outweighed by viral vectors’ inherent strengths. Compared
to non-viral systems, viral vectors typically offer significantly
longer-lasting transgene expression [19, 20] and intrinsic mechan-
isms for efficient cellular entry and genome integration or
persistence [21]. These features make viral vectors especially
effective for in vivo gene delivery [22], explaining why they remain
the primary focus in a substantial portion of cancer gene therapy
research [23]. Notably, viral vectors, such as retroviruses and
adenoviruses, can potentially achieve cancer cell-specific delivery
by modifying the proteins present in the viral envelope or, in the
case of AAV (Adeno-associated virus), altering the structure of the
viral capsid [14, 15].
AAV has a protein structure known as the viral capsid, allowing

for AAV capsid engineering through systematic gene modifica-
tions [24]. This characteristic facilitates the development of AAV
variants with specific tissue tropism for research purposes. As a
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result, AAVs have been developed that can cross the human
blood-brain barrier (BBB) for CNS transduction [25], target human
hepatocytes [26, 27], and transduce human cancer cells more
efficiently than wild-type AAV [28]. As a viral vector capable of cell-
type-specific or tissue tropism, AAV is relatively safe [29] and
provides long-term expression [30], enhancing its potential for

FDA approval in gene therapy compared to previously developed
viral vectors. Over 200 completed and ongoing clinical trials use
AAV as the gene transfer vector. The outstanding virtues of AAV—
its relative safety and the ability to provide prolonged transgene
expression—suggest that it will play a critical role as a strategic
tool in cancer gene therapy aimed at controlling and treating

Fig. 1 Anatomy and treatment course in advanced ovarian cancer. A Typical anatomical presentation of FIGO (International Federation of
Gynecology and Obstetrics) stage IIIC ovarian cancer. The 5-year survival rate for patients initially diagnosed with stage III ovarian cancer is
~26%. B Schematic representation of CA-125 levels and ovarian tumor burden in stage III high-grade serous ovarian cancer (HGSOC). The
standard treatment regimen for ovarian cancer typically involves optimal cytoreductive surgery followed by six cycles of chemotherapy using
carboplatin and paclitaxel. Post-chemotherapy, PARP inhibitors may be used as maintenance therapy to prolong progression-free survival
(PFS). If the patient experiences a relapse more than 6 months after completing the initial chemotherapy, it is classified as a platinum-sensitive
relapse, allowing for the same platinum- and taxane-based chemotherapy regimen to be reused. Conversely, if the relapse occurs within six
months, it is considered a platinum-resistant relapse. In these cases, targeted therapies such as bevacizumab, combined with agents like
pegylated liposomal doxorubicin (PLD), gemcitabine, or topotecan, are often utilized. Typically, PFS decreases with each successive relapse of
ovarian cancer, eventually leading to a stage where no effective treatments remain, resulting in patient mortality. Therefore, extending the PFS
following the initial chemotherapy is crucial for improving outcomes in ovarian cancer treatment. Promising gene therapy has the potential to
significantly increase this initial PFS by targeting specific pathways involved in tumor progression.
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cancer as a manageable disease. This review examines studies on
AAV-mediated cancer gene therapy for the treatment of ovarian
cancer and proposes future directions for this therapeutic
approach.

UNDERSTANDING OVARIAN CANCER: DIAGNOSIS, GENETICS,
INITIAL SURGERY, AND CHEMOTHERAPY
Diagnosis
Ovarian cancer often presents insidiously, making early diagnosis
challenging. Most women are diagnosed at stage III or IV,
exhibiting symptoms such as abdominal pain or discomfort,
menstrual irregularities, dyspepsia, other gastrointestinal distur-
bances, and urinary frequency or retention. In advanced stages,
respiratory symptoms may occur due to ascites or pleural effusion,
and bowel obstruction can also be present [31]. The late diagnosis
is attributed to subtle onset and vague symptoms of the disease,
which patients may mistake for ordinary changes related to
childbearing, menopause, or aging. Additionally, these symptoms
are often nonspecific and can mimic conditions like irritable bowel
syndrome. This difficulty in recognizing ovarian cancer symptoms
results in a prolonged and convoluted diagnostic process [32].

Genetics
Hereditary factors account for ~20% of ovarian cancers [33]. Most
are due to pathogenic mutations in the BRCA1 or BRCA2 genes,
which repair DNA double-stranded breaks via homologous
recombination. Inherited mutations in these genes are major risk
factors, with germline BRCA1 mutations increasing ovarian cancer
risk by 20%–50% and BRCA2 mutations by 10%–20% [34]. These
cancers typically occur at a younger age, especially in BRCA1
mutation carriers, with a median diagnosis age in the mid-40s [34].
For this reason, women with suspected hereditary cancer
syndromes, such as BRCA1 or BRCA2 mutations, or those with a
family history, young age at diagnosis, or high-grade ovarian
cancer, should receive genetic testing and counseling. If a
mutation is identified, risk-reducing bilateral salpingo-
oophorectomy is considered an effective preventive strategy to
reduce the risk of ovarian cancer [34]. While BRCA1 and BRCA2 are
well-documented as key genetic factors in hereditary ovarian
cancer, including mutations in other DNA repair genes, only
around 20% of ovarian cancer cases are attributed to genetic
causes [33]. The remaining 80% of cases remain unexplained by
known genetic mutations.

Initial surgery and chemotherapy
The prognosis for ovarian cancer is largely determined by the
maximum diameter of residual disease after cytoreductive surgery
[35, 36]. The standard treatment protocol for ovarian cancer
includes optimal cytoreductive surgery followed by a chemother-
apy regimen of six cycles of carboplatin and paclitaxel, or
docetaxel if paclitaxel is not tolerated [37] (Fig. 1b). In
advanced-stage cases, the volume of residual disease post-
surgery is the most important prognostic indicator [35, 36],
necessitating a comprehensive surgical approach that includes
total abdominal hysterectomy, bilateral salpingo-oophorectomy,
omentectomy, and maximal cytoreduction [38]. Additional proce-
dures involve peritoneal washings, multiple peritoneal biopsies,
appendectomy in mucinous histology, and resection of bulky
para-aortic and pelvic lymph nodes [38]. This standard treatment
may also be employed in cases of primary suboptimal
cytoreduction. For advanced-stage patients (IIIC or IV) with
unresectable tumors, 2–3 cycles of neoadjuvant chemotherapy
followed by surgical cytoreduction and further chemotherapy
are required [39].
The catalytic activity of PARP1 (poly ADP-ribose polymerase 1) is

crucial for mediating various DNA damage repair pathways,
including stabilizing DNA replication forks [40, 41]. Additionally, its

role in chromatin remodeling is closely linked to its function in
DNA repair [42]. Consequently, inhibiting PARP1 is an effective
strategy for treating cancers with deficiencies in the homologous
recombination repair of DNA double-strand breaks. Studies have
shown that BRCA mutations in ovarian cancers disrupt the
homologous recombination pathway, leading to increased sensi-
tivity to PARP inhibitors [43, 44]. Indeed, several clinical studies
demonstrated the promising efficacy of PARP inhibitors in ovarian
cancer patients [45–47]. There is growing evidence supporting
that the use of maintenance therapy with PARP inhibitors after a
response to platinum-based chemotherapy, in both first-line and
second-line settings, has significantly extended the interval
between response and disease relapse [48, 49] (Fig. 1b).
Although PARP inhibitors have increased progression-free

survival and overall survival compared to control ovarian cancer
treatments, patients ultimately experience disease relapse and
develop resistance to PARP inhibitors, leading to mortality
(Fig. 1b). The most presumptive resistance mechanism of PARP
inhibitors is the restoration of BRCA1 or BRCA2 protein
functionality through secondary mutations [50]. This mechanism
is also shared in resistance to platinum-based treatments in cancer
cells [51]. In PARP inhibitor-resistant human pancreatic cancer cell
lines, new BRCA2 isoforms were made by an intragenic deletion of
the frameshift mutation. This deletion restored the open reading
frame (ORF) of the BRCA2 gene, enabling the cells to repair drug-
induced DNA double-strand breaks via homologous recombina-
tion [52].
Although current treatment approaches are optimum, most

women with advanced-stage ovarian cancer will relapse even-
tually due to resistance to platinum-based drugs, PARP inhibitors,
or because of refractory cancer (Fig. 1b). This challenge has driven
significant interest in developing new, more targeted strategies
for treatment, with gene therapy presenting a potential new
option.

ADENO-ASSOCIATED VIRUS AS A DELIVERY VECTOR: FROM
BASICS TO THERAPEUTIC APPLICATIONS
Adeno-associated virus (AAV) belongs to human Parvovirus with a
single-stranded DNA genome and is one of the smallest known
viruses (~25 nm). Although it can transduce human cells, it has not
been identified as a causative agent of any specific disease
[53, 54]. AAV does not replicate well within host cells unless co-
infected with adenovirus [55]. Unlike adenovirus, AAV exhibits low
immunogenicity and does not strongly elicit a host immune
response [56].
Wild-type AAV contains a single-stranded DNA viral genome

flanked by inverted terminal repeat (ITR) sequences that form
hairpin structures [57] (Fig. 2a). Between these ITR sequences, the
AAV genome encodes the Rep gene, which is involved in the
rescue and replication of the viral genome, and the Cap gene,
which encodes the icosahedral capsid proteins responsible for
packaging the ssDNA viral genome [58]. In contrast to wild-type
AAV, recombinant AAV (rAAV) replaces the viral genes between
the ITR sequences with a therapeutic transgene (Fig. 2b). To
produce rAAV, host cells such as 293T cells are co-transfected with
plasmids encoding the Rep and Cap genes, as well as adenovirus
helper genes E4, E2a, and VA, to facilitate the assembly of AAV
particles containing the therapeutic gene [59].
A major limitation of using adeno-associated virus (AAV) for

cancer gene therapy is its relatively small viral genome size
compared to other viral vectors such as lentivirus and adenovirus
[60]. The ideal size for a therapeutic gene delivered by AAV is
generally <5 kb [61]. Although the wild-type AAV genome itself is
~4.7 kb (4675 bp) [57] (Fig. 1a), this size includes essential
regulatory elements like promoters and poly-A regions, which
leaves limited space for the therapeutic gene. Consequently, for
genetic disorders such as cystic fibrosis (CFTR, 4443 bp) or
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Duchenne muscular dystrophy (DMD, 11,034 bp) where the size of
the therapeutic gene exceeds 4 kb, AAV-based gene therapy may
become either unfeasible or exceptionally challenging.
In addition to the limitation imposed by the AAV packaging

capacity, a significant challenge in systemic AAV-mediated gene
delivery—particularly in the context of repeated dosing—is the
host immune system’s recognition of the viral capsid [62]. Pre-
existing neutralizing antibodies (NAbs), which develop from
natural exposure to wild-type AAV, can bind to the recombinant
AAV vectors and prevent it from reaching target cells [56]. These
antibodies block viral entry by interfering with receptor interac-
tions and promote rapid clearance through the reticuloendothelial
system [63]. Notably, seroprevalence studies indicate that around
half of the population develops AAV-specific NAbs by the age of
two, and once formed, these antibodies typically persist through-
out life [64–66]. Given this high prevalence, efforts to develop
effective AAV-based gene therapies for widespread applications,
such as anti-tumor treatments, must also address the challenge
posed by pre-existing NAbs. In the context of cancer, where broad
patient applicability is essential, strategies to evade or overcome
AAV neutralization—through capsid engineering, immune mod-
ulation, or alternative serotype selection—are likely to be critical
for clinical success.
A notable advancement in AAV technology is capsid engineer-

ing, which allows modification of the virus’s infection efficiency
and tissue tropism [67]. One of the most significant achievements
in this area is the development of AAV capsids capable of crossing
the blood-brain barrier (BBB) to achieve central nervous system

(CNS) transduction in several animal models, including mouse and
NHP (non-human primate) [25, 68, 69]. Subsequently, a break-
through study translated animal model research into a human
context by engineering an AAV capsid that specifically targets the
human transferrin receptor on the blood-brain barrier [70]. When
tested in transgenic mice expressing this receptor, the engineered
AAV was shown to effectively traverse the barrier and deliver a
therapeutically relevant gene to the CNS [70]. These efforts hold
great potential for treating CNS disorders.
The US FDA approved the most successful AAV-based gene

therapy in 2019 for treating spinal muscular atrophy, marketed as
Zolgensma (onasemnogene abeparvovec) [71, 72]. Subsequently,
multiple other AAV-based gene therapies have also gained
approval, solidifying AAV’s position as a promising viral vector in
the gene therapy market [58].

CHALLENGES OF GENE THERAPY IN OVARIAN CANCER
Gene therapy represents a promising strategy for treating ovarian
cancer, as it enables the introduction of various genes that
regulate molecular processes. This approach can inhibit tumor
growth, angiogenesis, invasion, and metastasis, and modulate
immune response [73]. Nonetheless, at least two significant
challenges must be addressed to ensure the success of these
therapeutic strategies.
Firstly, current knowledge of the molecular mechanisms driving

tumorigenesis and cancer progression remains incomplete. For
example, High-grade serous ovarian cancer (HGSOC), which

Fig. 2 Comparison of wild-type AAV and recombinant AAV. A Schematic representation of wild-type AAV, featuring its single-stranded viral
genome. The wild-type AAV genome comprises single-stranded DNA with two inverted terminal repeats (ITRs) at either end and includes the
essential genes Rep and Cap for viral replication. This genome produces at least three different transcript variants, each originating from
distinct starting points. The p5 and p19 promoters are responsible for transcribing mRNA for the Rep78, Rep68, Rep52, and Rep40 proteins,
while the p40 promoter transcribes the genes for the viral capsid proteins VP1, VP2, and VP3, as well as the non-structural proteins AAP and
MAAP, which are crucial for virus production. B Production of recombinant AAV and its representative structure. To produce AAV, a eukaryotic
cell, such as a HEK293T cell, is transfected with an AAV transgene plasmid containing the therapeutic gene intended for gene therapy, a Rep/
Cap plasmid derived from wild-type AAV, and a helper plasmid derived from adenovirus that contains genes promoting efficient AAV
production. After allowing sufficient time for the cells to produce AAV particles, AAV is harvested and purified from the cell lysate and
supernatant. This process results in the generation of functional recombinant AAV capable of therapeutic gene expression in the host. Unlike
wild-type AAV, recombinant AAV cannot replicate or propagate after transducing the host cell due to the absence of Rep/Cap genes.
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constitutes over two-thirds of ovarian cancers, is characterized by
high intra-tumoral heterogeneity [74]. This genomic instability
leads to the emergence of tumor subclones with competitive
advantages, such as faster growth rates or resistance to
chemotherapy. These advantageous subclones ultimately dom-
inate the tumor through a process known as “clonal expansion”,
and an elevated extent of clonal expansion has a detrimental
effect on a patient’s overall survival [75]. This observation of drug
resistance driven by clonal expansion through intra-tumoral
heterogeneity underscores the current limitations in our under-
standing of the specific stages of ovarian cancer progression and
the identification of optimal cellular (e.g., cancer stem cells) or
genetic targets for effective gene therapy.
Second, the erratic blood supply in ovarian cancer presents

substantial challenges for the direct delivery of therapeutic genes
to ovarian cancer cells in vivo. Uncontrolled tumor growth
contributes to the development of abnormal vasculature through
rapid and uncoordinated vascular expansion [76]. As tumors grow
uncontrollably, the demand for oxygen and nutrients in hypoxic
status increases, leading to the formation of haphazardly arranged
blood vessels that lack proper structure and function. The
aggressive expansion of tumor mass often outpaces the capacity
of the newly formed blood vessels to provide sufficient blood
supply, resulting in a chaotic and ineffective vascular network [77].
In addition, dysregulated angiogenesis signaling pathways in
ovarian cancer lead to the secretion of pro-angiogenic factors,
including vascular endothelial growth factor (VEGF), angiopoietin
(ANGPT), platelet-derived growth factor (PDGF), and fibroblast
growth factor (FGF) [78]. These factors facilitate the formation of
new yet structurally disorganized blood vessels, characterized by
increased permeability and suboptimal vessel maturation, ulti-
mately undermining the effectiveness of therapeutic gene
delivery to ovarian cancer cells via systemic administration.
Thus, for the successful implementation of gene therapy in

ovarian cancer, selecting the appropriate target cells and
therapeutic genes tailored to the stages of ovarian cancer
progression is necessary. Furthermore, taking advantage of the
unique anatomical location of ovarian cancer within the
abdominal cavity (Fig. 1a), it is essential to assess the efficacy of
intraperitoneal gene therapy when combined with traditional
systemic chemotherapy.

STRATEGIES FOR TARGETING OVARIAN CANCER CELLS IN
GENE THERAPY
The theoretical strategies for targeting ovarian cancer cells in
gene therapy can be broadly categorized based on two main
criteria: the target cell types for therapeutic gene expression
and the therapeutic gene types used to suppress cancer cell
growth (Fig. 3).
The first criterion focuses on the types of cells within the tumor

microenvironment and other organs or systemic compartments
that are targeted to receive the therapeutic gene expression.
Three main strategies fall under this criterion.
The first strategy focuses on selectively targeting cancer cells

within the tumor mass, with the goal of directing gene therapy
predominantly to malignant cells while limiting effects on
surrounding non-cancerous components. While not exclusively
specific, this approach enhances targeting toward cancer cells,
potentially limiting unintended effects on surrounding normal
cells or non-malignant cell types within the tumor microenviron-
ment. For example, intratumoral injection of an AAV vector
encoding SaCas9-KKH and sgRNA has been reported to reduce
tumor growth and moderately improve overall survival in an
orthotopic glioblastoma mouse model [79]. In addition, AAV
capsid engineering has been shown to enhance tumor cell-
specific transduction. One study developed AAV6 vectors incor-
porating RGD peptides and capsid mutations (Y705-731F, T492V,

K531E), which significantly increased transduction efficiency in
integrin-overexpressing cancer cells and improved tumor specifi-
city in vivo [28]. Another study engineered AAV2 capsids to
display a plectin-1 targeting peptide (PTP), resulting in a 37-fold
preference for pancreatic ductal adenocarcinoma (PDAC) tumors
over liver tissue, thus demonstrating the potential of engineered
capsids for tumor-targeted gene delivery [80].
The second strategy broadens the scope to include the cancer

cells, the tumor microenvironment, and other organs or systemic
compartments. This approach leverages the supportive roles that
these cells play in tumor growth, aiming to disrupt the tumor’s
supportive microenvironment. By simultaneously targeting cancer
cells and their surrounding support systems, this strategy
potentially enhances therapeutic efficacy and contributes to a
more hostile environment for tumor survival. For example, systemic
administration of AAV8 vectors encoding soluble VEGF receptors
(sVEGFR2 and sVEGFR3) led to transgene expression in both ovarian
tumor cells and their surrounding microenvironment. This approach
effectively reduced intratumoral angiogenesis and, when combined
with chemotherapy, suppressed tumor growth and ascites forma-
tion, ultimately improving overall survival in an ovarian cancer
model [81, 82]. Additionally, AAV capsid engineering has produced
RGD-modified vectors with enhanced muscle-specific transduction
after systemic delivery [83]. These capsids outperformed natural
serotypes in mouse models of genetic muscle disease and showed
conserved efficacy in non-human primates, highlighting their
therapeutic potential. This approach enables a strategy to maximize
anti-tumor effects by increasing specificity toward cancer cells or
their surrounding microenvironment.
The third strategy targets the surrounding tissue cells within the

tumor microenvironment, as well as cells in other organs or
systemic compartments, deliberately excluding the cancer cells.
Here, the therapeutic genes are introduced into the surrounding
supportive cells in the tumor microenvironment. By modifying
these supportive cells, this strategy can indirectly impair cancer
growth by weakening the resources and support that the tumor
relies on. A representative example of this approach is an AAV-
based vaccine that, despite being delivered intramuscularly to
normal tissue, induced strong and durable antigen-specific T and
B cell responses. This immune activation led to effective tumor
suppression in mouse models, including the poorly immunogenic
B16/F10-Ova melanoma, highlighting the potential of targeting
the tumor microenvironment rather than cancer cells directly
[84, 85].
The second criterion for categorizing gene therapy strategies in

ovarian cancer pertains to the type of therapeutic genes used.
These genes fall into three main types: gene silencing, gene
restoration, and gene supplementation. Gene silencing aims to
deactivate oncogenes or genes that play a role in cancer
progression, such as mutant KRAS [86], CLDN3 [87], and EGFR
[88]. By silencing these cancer-promoting genes, this approach
effectively reduces the proliferative and invasive potential of
cancer cells.
Gene restoration is another therapeutic approach that involves

reintroducing or restoring the function of tumor suppressor genes,
such as TP53 [89, 90] and PTEN [91, 92], which are often mutated
or inactivated in cancer. Restoring these genes can re-enable
cellular mechanisms that prevent uncontrolled cell division and
tumor growth, contributing to cancer suppression.
Finally, gene supplementation involves the addition of ther-

apeutic genes that aid in cancer treatment, including genes
encoding cytokines [93–95], anti-angiogenic proteins [96, 97], and
immune checkpoint inhibitors such as bevacizumab [98] and
pembrolizumab [99]. This supplementation strategy introduces
additional therapeutic agents to the tumor environment, aiming
to improve the immune response against cancer cells, inhibit
blood vessel formation needed for tumor growth, and enhance
overall therapeutic outcomes.
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LIMITATIONS OF GENE SILENCING AND GENE RESTORATION
STRATEGIES
The necessity of categorizing effective anticancer gene therapy
strategies based on target cells and therapeutic genes arises from
the inherent limitation that gene delivery vectors cannot
realistically transduce 100% of ovarian cancer cells. As previously
mentioned, it is practically challenging to achieve complete
transduction of the ovarian cancer mass, which can grow to
several centimeters in size [100], with poorly formed blood vessels
leading to hypoxic necrotic regions [101]. In particular, when
employing gene silencing strategies, the specificity and efficiency
of vector-mediated transduction of cancer cells become critically

important. In this context, the cancer cell transduction rate of the
delivery vector becomes a crucial determinant for the success of
gene therapy.
Even if not all ovarian cancer cells are transduced, effectively

inhibiting and killing the transduced cells to extend progression-
free survival by several months can still be considered beneficial.
However, given the high production and distribution costs of gene
therapies, these treatments must demonstrate substantial efficacy,
akin to the significant improvements in overall survival seen with
PARP1 inhibitors in ovarian cancer treatment [46, 47].
From this perspective, although gene supplementation strate-

gies are employed, approaches such as expressing suicide genes

Fig. 3 AAV gene therapy strategies for targeting ovarian cancer cells: focus on gene supplementation. Schematic representation of gene
therapy strategies targeting ovarian cancer cells using AAV. The strategies are categorized based on the target cells and the specific gene
therapy approaches employed. The diagram highlights the engineering of AAV capsids to selectively target ovarian cancer stem cells or
immune cells. Additionally, functional screening of therapeutic genes could be conducted using an in vivo ovarian cancer model with AAV to
identify potential therapeutic genes, including antibodies, anti-angiogenic factors, cytokines, and secretory tumor suppressors.
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specifically in cancer cells [102] (Fig. 3), using the CRISPR-Cas9
system to knock out overexpressed oncogenes [103], or inducing
the expression of microRNAs to inhibit oncogene translation [104]
within cancer cells may fail due to the realistic limitation of not
being able to transduce all cancer cells.
The gene restoration strategy, which involves delivering intact

tumor suppressor genes, similarly faces the intrinsic limitation that
the transduction efficiency of the delivery vector cannot reach
100%. Even if the theoretical inhibition efficiency of genes
delivered for gene silencing and gene restoration is 100%, if not
all cancer cells are eradicated, the clonal expansion of un-
transduced cancer cells may prevent patients from experiencing
the full therapeutic benefits [105, 106]. Therefore, the issue of
delivery efficiency significantly undermines the gene silencing and
gene restoration strategies, which rely on specifically transducing
cancer cells (Fig. 3).

TP53 gene therapy as a representative example of gene
restoration therapy
TP53 mutations are nearly ubiquitous in ovarian cancer, with a
prevalence of 96% [107]. Initial gene therapy efforts focused on
delivering normal TP53 to cancer cells via adenovirus, aiming to
restore its function and induce growth arrest and apoptosis [108].
While these approaches were effective in vitro and in vivo, they
did not translate successfully to clinical trials [109]. Two main
reasons for this failure are the limited understanding of TP53’s
biological functions and the inadequacy of delivery vectors and
routes. The assumption that delivering normal TP53 would restore
its function overlooked the dominant-negative effect of mutant
TP53. In cancer cells, endogenous mutant p53 exerts a dominant-
negative effect on wild-type (WT) p53, thereby inhibiting the
tumor-suppressing activities of WT p53 [110]. TP53 functions as a
tetramer [111], and in the presence of mutant TP53 or without a
significantly higher amount of normal TP53, functional restoration
is insufficient. Moreover, adenovirus vectors, used in clinical trials
for TP53 delivery, induce only transient expression of the
therapeutic gene [112], which is inadequate for sustained antic-
ancer effects in ovarian cancer. Additionally, adenoviruses elicit
strong immune responses, limiting their delivery efficiency to
cancer cells when administered via peritoneal injection [89].
Two independent studies have investigated the restoration of

wild-type TP53 using AAV vectors. One study demonstrated that
AAV-mediated expression of WT TP53 inhibited cancer cell
proliferation in vitro [113]. Another study showed tumor growth
suppression after cancer cells, transduced with AAV expressing WT
TP53, were injected subcutaneously into immunodeficient mice
[114]. However, these experimental designs do not provide
sufficient evidence to evaluate the in vivo transduction efficiency
of AAV in tumor cells. Therefore, based on these findings, the
strategy of TP53 gene restoration may need to be reconsidered for
its applicability in in vivo gene therapy.

PROPOSED OVARIAN CANCER GENE THERAPY: GENE
SUPPLEMENTATION
Anti-angiogenic gene supplementation using AAV in
ovarian cancer
Considering the failures of adenovirus-mediated TP53 gene
therapy in ovarian cancer, gene supplementation emerges as a
promising alternative (Fig. 3). AAV vectors have been employed in
ovarian cancer gene therapy to induce the expression of anti-
angiogenesis factors or VEGFR-inhibiting antibodies [54]. Gene
supplementation aligns with the mechanisms of modern immu-
notherapies [115] and CAR-T therapy [116], which strengthen host
immune responses against cancer cells rather than targeting
cancer cells directly. These therapies fall under the category of
targeting cells within the tumor microenvironment, excluding
cancer cells (Fig. 3). From this perspective, studies that have

demonstrated the efficacy of ovarian cancer gene therapy using
AAV by expressing secretory proteins as gene supplements are as
follows.
AAV encoding the human soluble FMS-like tyrosine kinase

receptor 1 (sFlt-1), which functions by both sequestering vascular
endothelial growth factor (VEGF) and forming inactive hetero-
dimers with other membrane-spanning VEGF receptors, leads to
stable expression and significantly inhibits the growth of
angiogenesis-dependent human ovarian cancer cells in a mouse
xenograft model [96, 97] Compared to the control group,
treatment with AAV-sFlt-1 resulted in an 80% reduction in tumor
size and protected 83% of mice from death [96]. Kringle 5 (K5), a
fragment of plasminogen, serves as an effective endogenous
inhibitor of angiogenesis by both inhibiting endothelial cell
proliferation and migration and inducing endothelial cell apopto-
sis [117, 118]. Administration of AAV-K5 led to a significant
reduction in both subcutaneous and intraperitoneal growth of
human ovarian cancer cells [119]. Compared to the control group,
treatment with AAV encoding K5 resulted in a 60% reduction in
tumor size and a 30% decrease in tumor weight [119]. A single
intramuscular administration of AAV encoding angiostatin and
endostatin inhibits intraperitoneal ovarian cancer growth in a
preclinical mouse model [120]. Compared to the control mice,
those treated with AAV encoding sFlt-1 exhibited significant
tumor-free survival, reduced ascites volume, and lower levels of
vascular endothelial growth factor (VEGF) in the ascites. Specifi-
cally, AAV-sFlt-1 treatment led to a 20% reduction in tumor-
induced ascites volume, a 50% decrease in tumor weight, and
protected 30% of the mice from tumor-related death [120].
Similarly, when AAV-encoding endostatin and angiostatin were
administered intraperitoneally, it also showed sustained antitumor
effects on the growth and dissemination of epithelial ovarian
cancer in a mouse model [121]. Surprisingly, while AAV-mediated
expression of endostatin and angiostatin alone extended mouse
survival by ~25 days, the combination of AAV-mediated endo-
statin and angiostatin expression with paclitaxel treatment
provided 90% protection from ovarian cancer–related death over
a 240-day observation period [121]. Likewise, using AAV to express
a point-mutated endostatin (P125A-endostatin) with enhanced
endothelial cell binding and antiangiogenic activity resulted in
sustained expression for 9 weeks from a single intramuscular
administration and significantly inhibited the growth of human
ovarian cancer cells in athymic nude mice, leading to an 80%
reduction in tumor volume [122]. Treatment with AAV-P125A-
endostatin in combination with carboplatin resulted in 60% of the
animals remaining tumor-free for over 200 days, which was
significantly better than treatment with AAV-vehicle and/or
carboplatin alone [123].
Thrombospondin-1 (TSP-1) exhibits potent antiangiogenic

activity due to its three type 1 repeat (3TSR) domain binding to
CD36 on endothelial cells [124, 125]. Additionally, the KRFK motif
in the second of these repeats is involved in activating the TGF-β
pathway and demonstrates antitumor activity [126]. Pretreatment
with 3TSR combined with chemotherapy significantly induced
ovarian tumor regression, normalized tumor vasculature, and
improved drug uptake, resulting in a reduction in ovarian tumor
size compared to PBS controls and enhanced survival in
advanced-stage ovarian cancer [127]. This combination also
reduced tumor hypoxia by 50% and decreased tumor weight by
70%. In addition, the AAV-mediated delivery of 3TSR effectively
decreases the formation of primary and secondary lesions and
significantly prolongs survival in a murine model of orthotopic
epithelial ovarian cancer at 90 days post-tumor implantation [128].
Furthermore, AAV-mediated delivery of 3TSR and the Fc domain-
modified Fc3TSR, which is designed to prolong transgene
expression, significantly enhances survival in a mouse model of
epithelial ovarian cancer, although it did not outperform AAV-
Bevacizumab in terms of survival benefit [129].
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Bevacizumab, a humanized monoclonal antibody that targets
and neutralizes VEGF, effectively inhibits tumor angiogenesis and
exhibits significant anticancer activity [130]. The use of AAV
vectors for delivering bevacizumab has shown significant results
in cancer therapy. AAV-mediated delivery to the pleura effectively
inhibits metastatic lung tumors [131], and persistent AAV-
mediated bevacizumab therapy demonstrates notable tumor
growth suppression in ovarian cancer models, reducing tumor
weight by more than 80% and enabling the treated mice to
survive twice as long as the control mice [132]. Furthermore, the
use of AAV-mediated sVEGFR (soluble VEGFR) decoy gene therapy
effectively inhibits intra-tumoral angiogenesis and tumor growth
in an ovarian cancer model by targeting the VEGF/VEGFR signaling
pathway, resulting in a twofold increase in survival rate. This
approach demonstrates the potential of antiangiogenic gene
therapy as a viable treatment for ovarian cancer [81].

AAV gene supplementation for enhancing immune responses
against ovarian cancer
Utilizing AAV for the expression of cytokines represents a promising
approach for the development of immune-based cancer immu-
notherapies [93–95]. IL-12 is a cytokine known for its potent immune-
stimulating activity and plays a critical role in initiating and
augmenting cell-mediated immunity [133]. IL-12 is primarily synthe-
sized by immune cells such as dendritic cells and macrophages, and it
plays a crucial role in driving Th1 cell differentiation, stimulating
activation of T, B, and NK cells, and inducing the reprogramming of
immunosuppressive cells [134]. Indeed, AAV-mediated delivery of IL-
12 and tumor-associated cell-based vaccines represents an innovative
approach in ovarian cancer immunotherapy [135].
While preclinical studies have demonstrated strong anti-tumor

activity of AAV vectors carrying IL-12 [136–139], systemic
administration of recombinant IL-12 in mice and humans has
been associated with severe adverse effects [140, 141]. To reduce
the toxicity associated with IL-12 and achieve controlled
transgene expression, the Tet-On system has been employed for
regulatable AAV-mediated IL-12 expression [142].
AAV-Tet-On-IL-12 has demonstrated high efficacy in preventing

the establishment of metastasis and inducing a robust T-cell
memory response against tumor cells. Additionally, a tetracycline-
dependent riboswitch has been developed, allowing potent
regulation of AAV-based transgene expression via a tetracycline
aptamer [143]. The Tet-On system enables inducible gene
expression in the presence of doxycycline or tetracycline, allowing
temporal control over transgene activation. This system is
designed to enable protein production from mRNA only in the
presence of tetracycline, offering reversibility and repeatable
induction capabilities for treating hepatocellular cancer in mice
[144]. Considering the long-term expression characteristic of AAV
in cancer gene therapy, a system that enables AAV transgene
expression only when treatment is needed could be a valuable
application for future AAV-mediated therapeutics.
AAV-based antigen loading of dendritic cells generates efficient

cytotoxic T-cell responses in vitro [145, 146]. A quantitative
transcriptomic-based investigation demonstrated that AAV particles
are efficiently internalized without inducing detectable transcrip-
tomic changes in monocyte-derived dendritic cells, in contrast to
adenoviral infection, which upregulates anti-viral pathways. This
report indicates that AAV has an immunologically favorable profile
for the activation of dendritic cells [147]. AAV-mediated Her-2/neu
expression in dendritic cells robustly stimulated cytotoxic T cells
targeting ovarian cancer cells [148]. Dendritic cells transduced with
an AAV-expressing Sperm protein 17 (Sp17) have been shown to
generate a robust antigen-specific cytotoxic T-cell response against
ovarian cancer cells. Additionally, these transduced dendritic cells
significantly enhance the differentiation of cytotoxic T-cells,
demonstrating their potential efficacy in immunotherapeutic
strategies against ovarian cancer [149].

ADDITIONAL CONSIDERATIONS FOR SUCCESSFUL OVARIAN
CANCER GENE THERAPY USING AAV
Significant advancements in AAV biotechnology, particularly in
AAV capsid engineering and transgene expression, can be applied
to ovarian cancer gene therapy (Fig. 3). This integration can
enhance ovarian cancer gene therapy from the following two
perspectives:

Capsid engineering for ovarian cancer stem cell-specific
transduction
Recent studies have demonstrated that AAV capsid engineering
can enhance cancer cell-specific transduction efficiency
[28, 80, 150–152], thereby increasing antitumor effects while
reducing cytotoxicity to normal cells [153]. Although these studies
have shown promising antitumor effects in both in vitro and
in vivo models, the practical challenges of achieving comprehen-
sive transduction of all cancer cells, particularly due to the clonal
expansion of cancer cells and drug resistance associated with
cancer stem cells and intra-tumoral heterogeneity, highlight the
limitations of strategies targeting the entire tumor mass in ovarian
cancer gene therapy.
One of the major challenges in treating ovarian cancer is

overcoming chemoresistance, which is often caused by intra-
tumor heterogeneity [154, 155]. A significant concern is cancer
stem cells, which are considered to be a source of tumor
heterogeneity [156, 157]. These cells can survive initial che-
motherapy and lead to relapse through clonal expansion
[156, 157]. Cancer organoids, derived from cells with stemness,
are valuable for their ability to accurately replicate the complex-
ities and heterogeneity of primary tumors. They retain the genetic
and molecular characteristics of the original tumor, including
mutations, gene expression profiles, and drug resistance [158].
Thus, ovarian cancer stem cell-derived organoids serve as valuable
models for screening therapeutic transgenes to overcome
chemoresistance [159], as it is known that organoids form from
ovarian cancer stem cells [160–162]. These ovarian cancer
organoids are already used for drug screening in personalized
cancer therapy [163–165]; however, the limited availability of
existing anticancer drugs poses a significant challenge to
organoid-assisted precision personalized therapy. In this situation,
gene therapy could offer a broader range of therapeutic genes,
potentially fulfilling the concept of personalized cancer treatment
more effectively.
AAV vectors can be engineered to transduce specific cell types,

due to their protein-based capsid structure. By modifying the AAV
capsid genes, vectors can be designed to target ovarian cancer
stem cells specifically, addressing chemoresistance and prevent-
ing ovarian cancer relapse. Thus, research focused on engineering
AAV capsids for specific transduction of ovarian cancer stem cells
represents a promising direction (Fig. 3). This approach holds
promise as it may enable targeted therapy against ovarian cancer
stem cells, which are critical in tumor relapse and drug resistance.
Considering that organoid-based drug screening using patient-
derived ovarian cancer stem cells is currently being pursued
[163–165], developing AAV capsids with the capability to
specifically transduce ovarian cancer stem cells represents a
feasible and strategic research direction. Similarly, a study
reported that combining capsid engineering with microRNA-
dependent gene editing enhances tumor specificity. Specifically, a
mosaic-capsid AAV vector—composed of AAV2 and AAV.CAP-B22,
the latter known for its ability to cross the mouse blood-brain
barrier—was used to target glioblastoma-initiating cells (GICs).
This approach selectively eliminated GICs, reduced tumor growth,
and extended survival in mice. Compared to the control group,
which had a median survival of 32 days, treated mice survived for
55 days—an increase of ~72%. In addition, tumor volume was
reduced by about 60%, highlighting the potential of this strategy
for precision cancer therapy. These findings suggest that capsid
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engineering can be effectively utilized to target cancer stem cell
populations, providing a viable strategy for overcoming thera-
peutic resistance. This supports the feasibility of applying similar
approaches to ovarian cancer stem cells, reinforcing the promise

of AAV capsid engineering as a precision tool for targeting the
root of tumor relapse and progression [166].
Furthermore, evaluating therapeutic transgenes utilizing such

AAVs to target ovarian cancer stem cells is crucial, as overcoming

Fig. 4 Schematic overview of therapeutic application and mechanism of AAV gene therapy targeting ovarian cancer. A This schematic
illustrates a conceptual framework for incorporating AAV-based gene therapy into the current standard treatment regimen for ovarian cancer.
Following maximal cytoreductive surgery and adjuvant chemotherapy with paclitaxel and carboplatin, AAV gene therapy—targeting
angiogenesis or immune modulation pathways—is administered either in parallel with or sequentially after chemotherapy. The addition of
gene therapy aims to enhance the durability of treatment response and significantly extend the duration of PFS beyond what is typically
achieved with chemotherapy alone. This strategy addresses the critical need for therapeutic interventions that can delay relapse and improve
long-term outcomes in ovarian cancer patients. B This illustration depicts the proposed molecular mechanism of AAV-mediated gene therapy
targeting ovarian cancer. AAV vectors can be administered either intravenously (IV) or intraperitoneally (IP). Although the evaluation of
administration routes lies beyond the scope of this review, it remains a critical consideration due to the anatomical characteristics of ovarian
cancer, which predominantly resides within the peritoneal cavity. Determining the more effective route for AAV delivery—IV or IP—may
significantly influence therapeutic efficacy. Engineered AAV capsids capable of efficiently infecting residual, microscopic ovarian cancer cells
following maximal cytoreductive surgery can facilitate the delivery and expression of therapeutic genes within both ovarian tumor cells and
cancer stem cells. Ideally, the anti-cancer proteins encoded by these genes should exert not only cell-autonomous anti-tumor effects in
transduced cells, but also paracrine effects on neighboring malignant cells, thereby enhancing the overall therapeutic response.
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chemotherapy resistance remains a significant challenge in the
effective treatment of ovarian cancer.

Screening for the most effective therapeutic genes
deliverable by AAV
Screening for the most effective anticancer genes to be delivered
via AAV is challenging. Traditionally, research approaches in
cancer gene therapy have focused on delivering genes with well-
defined mechanisms of action, such as Inhibition of angiogenic
pathways, or immune activation [153]. The advantage of these
studies lies in the ease of hypothesis formulation and the
straightforward interpretation of results. However, the major
drawback is the difficulty in adopting an unbiased approach,
making it impossible to discover entirely new therapeutic
methods unpredictably.
Recently, research utilizing the CRISPR-Cas9 system for genetic

screening has been actively conducted to elucidate the mechan-
isms underlying drug resistance in cancer and to identify related
genes [167, 168]. These studies employed lentivirus as a delivery
vector, which allows for easy control of the MOI (multiplicity of
infection), and utilized barcodes and UMIs (unique molecular
identifier) to track delivered sgRNAs (single guide RNA), with data
analysis facilitated by NGS (next-generation sequencing) techni-
ques. Similarly, constructing AAVs loaded with various potential
anticancer genes as transgenes and conducting screenings in vivo
or in vitro could establish a critical strategic screening platform for
discovering novel anticancer genes previously unknown [169, 170].

CONCLUSION AND FUTURE DIRECTION
Ovarian cancer, similar to pancreatic cancer, often lacks clear
symptoms in its early stages, making early detection very difficult
[32]. As a result, it is usually diagnosed at an advanced stage. Due
to the ovary’s anatomical structure, which is directly exposed to
the peritoneal cavity, and the nature of cancers originating from
ovarian epithelium, ovarian cancer is often found with peritoneal
metastasis, frequently accompanied by significant ascites. Despite
this dismal situation, the initial response rate to treatment for
ovarian cancer is relatively high. This achievement is due to a well-
established standard protocol that includes maximal cytoreduc-
tive surgery combined with platinum-based chemotherapy, as
well as PARP inhibitor maintenance therapy. While complete
remission is sometimes observed, over 80% of patients with
advanced ovarian cancer experience recurrence and eventually
develop resistance to all administered chemotherapies, leading to
a high mortality rate [5].
To address the therapeutic limitations associated with ovarian

cancer, a range of innovative strategies has been investigated.
This review focuses on the potential of AAV as a gene delivery
vector for ovarian cancer therapy, with particular emphasis on
approaches involving anti-angiogenic and immune-modulating
genes. Specifically, AAV-mediated gene therapy for ovarian cancer
should be considered for administration either in combination
with, or sequentially following, standard chemotherapy regimens
involving paclitaxel and carboplatin after maximal cytoreductive
surgery (Fig. 4a). The primary objective of this therapeutic strategy
would ideally be to significantly prolong progression-free survival
beyond two years post-surgery and, ultimately, to achieve
complete prevention of disease recurrence.
This approach underscores the practical applicability of gene

supplementation strategies in the context of ovarian cancer
suppression. For optimal efficacy, the therapeutic gene encoded
within the AAV vector should demonstrate preferential transduc-
tion of ovarian tumor cells and cancer stem cells over normal
tissue. Moreover, genes capable of exerting anti-tumor effects not
only within directly transduced cells but also on neighboring
malignant cells would represent ideal candidates for inclusion in
such gene therapy platforms (Fig. 4b).

Recent advances in capsid engineering have shown that AAV can
target specific tissues or cells. By taking advantage of this property,
developing AAV that targets cancer stem cells using markers known
to identify ovarian cancer stem cells (CD24, CD44, CD133, CD117,
ALDH1, SOX2, and OCT4) [171] presents an effective and promising
gene therapy strategy, given the role of cancer stem cells in drug
resistance and tumor heterogeneity. Additionally, with the rapid
advancements in DNA sequencing technologies, research aimed at
identifying therapeutic genes for ovarian cancer gene therapy
through functional screening and incorporating them into AAV
vectors could lead to new directions for ovarian cancer gene therapy.
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