Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RUNX1A isoform is overexpressed in acute myeloid leukemia and is associated with FLT3 internal tandem duplications

Abstract

RUNX1A is the shortest and least expressed of the RUNX1 three main isoforms (A, B, C); despite this, the leukemogenic role of its overexpression has been clearly described. Several studies have shown RUNX1A involvement in different blood cancers and pilot observations in acute leukemia have been reported. In this context, we evaluated RUNX1 isoforms expression in a cohort of acute myeloid leukemia (AML) patients, finding overexpression of RUNX1A and RUNX1B, with higher median levels in thrombocytopenic cases. No difference was observed for RUNX1C. RUNX1A overexpression is higher in more immature AML phenotypes. According to the mutational profile, FLT3 internal tandem duplication (ITD) positive cases have the highest RUNX1A levels and the presence of FLT3-ITD was the only molecular variable able to influence RUNX1A expression. RUNX1A overexpression is disease-related, associated with a specific transcriptional profile, and reappears at relapse, with no clear kinetics except in FLT3-ITD cases. Overall, we demonstrate RUNX1A overexpression in AML and its association with the FLT3-ITD molecular subtype. Our data shed light on the dark side of RUNX1 deregulation, paving the way for further investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RUNX1 isoforms molecular quantification in AML.
Fig. 2: Distribution of RUNX1A levels in AML.
Fig. 3: RUNX1A, kinetics and RNA-Seq data analysis.
Fig. 4

Similar content being viewed by others

Data availability

The data generated in this study are available upon request from the corresponding author.

References

  1. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 1995;23:2762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 1995;14:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, et al. RUNX1 isoform disequilibrium promotes the development of trisomy 21–associated myeloid leukemia. Blood. 2023;141:1105–18.

    Article  CAS  PubMed  Google Scholar 

  4. Tsuzuki S, Seto M. Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1. Blood. 2012;119:727–35.

    Article  CAS  PubMed  Google Scholar 

  5. Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol. 2010;38:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Zhang Q, Zhang DE, Zhou C, Xing H, Tian Z, et al. Overexpression of an isoform of AML1 in acute leukemia and its potential role in leukemogenesis. Leukemia. 2009;23:739–45.

    Article  CAS  PubMed  Google Scholar 

  7. Sakurai H, Harada Y, Ogata Y, Kagiyama Y, Shingai N, Doki N, et al. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood Adv. 2017;1:1382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engvall M, Karlsson Y, Kuchinskaya E, Jörnegren Å, Mathot L, Pandzic T, et al. Familial platelet disorder due to germline exonic deletions in RUNX1: a diagnostic challenge with distinct alterations of the transcript isoform equilibrium. Leuk Lymphoma. 2022;63:2311–20.

    Article  CAS  PubMed  Google Scholar 

  9. Cabrerizo Granados D, Barbosa I, Baliakas P, Hellström-Lindberg E, Lundin V. The clinical phenotype of germline RUNX1 mutations in relation to the accompanying somatic variants and RUNX1 isoform expression. Genes Chromosom Cancer. 2023;62:672–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cumbo C, Tarantini F, Anelli L, Zagaria A, Redavid I, Minervini CF, et al. IRF4 expression is low in Philadelphia negative myeloproliferative neoplasms and is associated with a worse prognosis. Exp Hematol Oncol. 2021;10:1–4.

    Article  Google Scholar 

  11. Tarantini F, Cumbo C, Parciante E, Anelli L, Zagaria A, Coccaro N et al. IRF4 gene expression on the trail of molecular response: looking at chronic myeloid leukemia from another perspective. Acta Haematol. 2022. https://doi.org/10.1159/000527173.

  12. Cumbo C, Tarantini F, Zagaria A, Anelli L, Minervini CF, Coccaro N, et al. Clonal hematopoiesis at the crossroads of inflammatory bowel diseases and hematological malignancies: a biological link?. Front Oncol. 2022;12:1–5.

    Article  Google Scholar 

  13. Coccaro N, Zagaria A, Orsini P, Anelli L, Tota G, Casieri P, et al. RARA and RARG gene downregulation associated with EZH2 mutation in acute promyelocytic-like morphology leukemia. Hum Pathol. 2018;80:82–86.

    Article  CAS  PubMed  Google Scholar 

  14. Cumbo C, Orsini P, Tarantini F, Anelli L, Zagaria A, Tragni V, et al. TNFRSF13B gene mutation in familial acute myeloid leukemia: a new piece in the complex scenario of hereditary predisposition?. Hematol Oncol. 2023;41:942–6.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy KM, Levis M, Hafez MJ, Geiger T, Cooper LC, Smith BD, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5:96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. 2017 https://doi.org/10.1182/blood-2016-08-733196.

  17. Cumbo C, Tarantini F, Anelli L, Zagaria A, Specchia G, Musto P, et al. FLT3 mutational analysis in acute myeloid leukemia: advantages and pitfalls with different approaches. Blood Rev. 2022;54:100928.

    Article  CAS  PubMed  Google Scholar 

  18. Polak TB, van Rosmalen J, Dirven S, Herzig JK, Cloos J, Meshinchi S, et al. Association of FLT3-internal tandem duplication length with overall survival in acute myeloid leukemia: a systematic review and meta-analysis. Haematologica. 2022;107:2506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  22. Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Article  Google Scholar 

  24. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–W221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  26. Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–30.

    Article  PubMed  Google Scholar 

  27. Lu J, Guo Y, Yin J, Chen J, Wang Y, Wang GG, et al. Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations. Nat Commun. 2024;15:1–16.

    CAS  Google Scholar 

  28. Fu L, Fu H, Tian L, Xu K, Hu K, Wang J, et al. High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia. Oncotarget. 2016;7:15828–39.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang C, Tu Z, Cai X, Wang W, Davis AK, Nattamai K, et al. A critical role of RUNX1 in governing megakaryocyte-primed hematopoietic stem cell differentiation. Blood Adv. 2023;7:2590–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bennett JM, Catovsky D, Daniel M-T, Flandrin G, Galton DAG, Gralnick HR, et al. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med. 2007;4:0880–96.

    Article  CAS  Google Scholar 

  33. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77.

    Article  PubMed  Google Scholar 

  34. Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular basis of hematological disease caused by inherited or acquired RUNX1 mutations. Exp Hematol. 2022;111:1–12.

    Article  CAS  PubMed  Google Scholar 

  35. Davis AG, Einstein JM, Zheng D, Jayne ND, Fu XD, Tian B, et al. A CRISPR RNA-binding protein screen reveals regulators of RUNX1 isoform generation. Blood Adv. 2021;5:1310–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komeno Y, Yan M, Matsuura S, Lam K, Lo MC, Huang YJ, et al. Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood. 2014;123:3760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fortier JM, Payton JE, Cahan P, Ley TJ, Walter MJ, Graubert TA. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia. 2010;24:950–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng CK, Li L, Cheng SH, Ng K, Chan NPH, Ip RKL, et al. Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood. 2011;118:6638–48.

    Article  CAS  PubMed  Google Scholar 

  39. De Bruijn M, Dzierzak E. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood. 2017;129:2061–9.

    Article  PubMed  Google Scholar 

  40. Bellissimo DC, Speck NA. RUNX1 mutations in inherited and sporadic leukemia. Front Cell Dev Biol. 2017;5:1–11.

    Article  Google Scholar 

  41. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129:2070–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cumbo C, Tota G, De Grassi A, Anelli L, Zagaria A, Coccaro N, et al. RUNX1 gene alterations characterized by allelic preference in adult acute myeloid leukemia. Leuk Lymphoma. 2021;0:1–9.

    Google Scholar 

  43. Zagaria A, Anelli L, Coccaro N, Tota G, Casieri P, Cellamare A, et al. 5′RUNX1-3′USP42 chimeric gene in acute myeloid leukemia can occur through an insertion mechanism rather than translocation and may be mediated by genomic segmental duplications. Mol Cytogenet. 2014;7:1–8.

    Article  Google Scholar 

  44. Levanon D, Glusman G, Bangsow T, Ben-Asher E, Male DA, Avidan N, et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene. 2001;262:23–33.

    Article  CAS  PubMed  Google Scholar 

  45. Ghozi MC, Bernstein Y, Negreanu V, Levanon D, Groner Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc Natl Acad Sci USA. 1996;93:1935–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cauchy P, James SR, Zacarias-Cabeza J, Ptasinska A, Imperato MR, Assi SA, et al. Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep. 2015;12:821–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Behrens K, Maul K, Tekin N, Kriebitzsch N, Indenbirken D, Prassolov V, et al. RUNX1 cooperates with FLT3-ITD to induce leukemia. J Exp Med. 2017;214:737–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by “Associazione Italiana contro le Leucemie (AIL)-BARI”.

Funding

This project received support from a grant awarded by Fondazione GIMEMA (Fondo per le Idee, 2021 edition).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: CC and FA. Acquisition of data and/or analysis and interpretation of data: CC, FT, EP, LA, AZ, NC, GT, IR, MRC, AM, CFM, GS, PM, and FA. Clinical data acquisition: FT, VPG, and MD. Protein quantification: GB, AN, and FG. RNA-sequencing: MFC, FM, CT, SNC, BB and AT. Methylation analysis: PO and MG. Drafting of the manuscript: FA. All authors revised the manuscript for important intellectual content and approved the final version submitted for publication.

Corresponding author

Correspondence to Francesco Albano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The local Ethics Committee of “Azienda Ospedaliero Universitaria Policlinico di Bari” approved the study. Informed consent was obtained from all patients before study inclusion, in accordance with the Declaration of Helsinki. Patients’ records/information were anonymized and de-identified before analysis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cumbo, C., Tarantini, F., Parciante, E. et al. RUNX1A isoform is overexpressed in acute myeloid leukemia and is associated with FLT3 internal tandem duplications. Cancer Gene Ther 32, 963–972 (2025). https://doi.org/10.1038/s41417-025-00939-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00939-z

Search

Quick links