Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

LncSNHGs: new targets in osteosarcoma

Abstract

Long non-coding RNAs (lncRNAs) have attracted significant attention for their role in tumor initiation and progression. Specifically, studying lncRNA small nucleolar RNA host genes (lncSNHGs) has opened up new possibilities for the treatment of osteosarcoma (OS). This review aims to give a thorough overview of the state of research on the biological roles, molecular mechanisms, and expression of the lncRNA SNHG family in OS. Through an extensive analysis, it is demonstrated that members of the SNHG family exhibit dysregulated expression patterns in OS. These dysregulations affect multiple oncogenic processes, including tumor proliferation, metastasis, apoptosis, autophagy, and chemotherapy resistance. The lncRNA SNHG family promises to identify novel strategies and targets for diagnosing, treating, and prognosis OS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis process of lncSNHGs.
Fig. 2: The biological functions of lncSNHGs.
Fig. 3: The role of lncSNHGs in osteosarcoma.

Similar content being viewed by others

References

  1. Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024;23:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rojas GA, Hubbard AK, Diessner BJ, Ribeiro KB, Spector LG. International trends in incidence of osteosarcoma (1988–2012). Int J Cancer. 2021;149:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, et al. Osteosarcoma. Nat Rev Dis Prim. 2022;8:77.

    Article  PubMed  Google Scholar 

  4. Hou CH, Chen WL, Lin CY. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib. Cell Death Dis. 2024;15:1–13.

    Article  Google Scholar 

  5. Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76.

    Article  CAS  PubMed  Google Scholar 

  6. Lian H, Zhang J, Hou S, Ma S, Yu J, Zhao W, et al. Immunotherapy of osteosarcoma based on immune microenvironment modulation. Front Immunol. 2025;15:1498060.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, et al. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med. 2024;5:101728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barczak W, Carr SM, Liu G, Munro S, Nicastri A, Lee LN, et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat Commun. 2023;14:1–17.

    Article  Google Scholar 

  9. Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies. Trends Pharm Sci. 2022;43:269–80.

    Article  CAS  PubMed  Google Scholar 

  10. Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, et al. Targeting long non-coding RNA to therapeutically regulate gene expression in cancer. Mol Ther Nucleic Acids. 2020;21:712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, et al. Role of long non-coding RNAs in cancer: from subcellular localization to nanoparticle-mediated targeted regulation. Mol Ther Nucleic Acids. 2023;33:774–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Qiu M, Shen M, Dong S, Ye G, Shi X, et al. The emerging regulatory roles of long non-coding RNAs implicated in cancer metabolism. Mol Ther. 2021;29:2209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pathania AS, Challagundla KB. Exosomal long non-coding RNAs: emerging players in the tumor microenvironment. Mol Ther Nucleic Acids. 2021;23:1371–83.

    Article  CAS  PubMed  Google Scholar 

  14. Badowski C, He B, Garmire LX. Blood-derived lncRNAs as biomarkers for cancer diagnosis: the good, the bad and the beauty. NPJ Precis Oncol. 2022;6:1–18.

    Google Scholar 

  15. Xiao H, Feng X, Liu M, Gong H, Zhou X. SnoRNA and lncSNHG: advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol. 2023;14:1143980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan AQ, Zheng YF. The roles of SNHG family in osteoblast differentiation. Genes. 2022;13:2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng H, Wang G, Wang Y, Liu J, Ma G, Du J. Systematic analysis reveals a pan-cancer SNHG family signature predicting prognosis and immunotherapy response. iScience. 2023;26:108055.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: a new budding star in human cancers. Gene. 2020;749:144724.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Q, Luo J, Wang H, Zhang L, Jin G. SNHG1 functions as an oncogenic lncRNA and promotes osteosarcoma progression by up-regulating S100A6 via miR-493-5p. Acta Biochim Biophys Sin. 2022;54:137–47.

    Article  PubMed  Google Scholar 

  20. Zheng HL, Yang RZ, Xu WN, Liu T, Chen PB, Zheng XF, et al. Characterization of LncRNA SNHG22 as a protector of NKIRAS2 through miR-4492 binding in osteosarcoma. Aging. 2020;12:18571–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the canon: novel cancer-promoting functions and mechanisms for snoRNAs. Int J Mol Sci. 2024;25:2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu X, Cui W, Liu M, Zhang F, Zhao Y.Zhang M, et al. SnoRNAs: the promising targets for anti-tumor t herapy. J Pharm Anal. 2024;14:101064.

  23. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol. 2020;10:389.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng S, Jiang F, Ge D, Tang J, Chen H, Yang J, et al. LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed Pharmacother. 2019;112:108695.

    Article  CAS  PubMed  Google Scholar 

  26. Bai CJ, Gao T, Liu JY, Li S, Wang XY, Fan ZF. SNHG9/miR-214-5p/SOX4 feedback loop regulates osteosarcoma progression. Neoplasma. 2022;69:1175–84.

    Article  CAS  PubMed  Google Scholar 

  27. Wan N, Liu Q, Shi J, Wang S. LncRNA SNHG25 predicts poor prognosis and promotes progression in osteosarcoma via the miR-497-5p/SOX4 axis. Comb Chem High Throughput Screen. 2024;27:725–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang GD, Gai PZ, Liao GY, Li Y. LncRNA SNHG7 participates in osteosarcoma progression by down-regulating p53 via binding to DNMT1. Eur Rev Med Pharm Sci. 2019;23:3602–10.

    Google Scholar 

  29. Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 2011;31:1609–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. He P, Xu Y, Wang Z. LncRNA SNHG10 increases the methylation of miR-218 gene to promote glucose uptake and cell proliferation in osteosarcoma. J Orthop Surg Res. 2020;15:353.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ruan J, Zheng L, Hu N, Guan G, Chen J, Zhou X, et al. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch Biochem Biophys. 2018;646:128–36.

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Wu Z, Zhang Y. LncRNA SNHG3 promotes cell growth by sponging miR-196a-5p and indicates the poor survival in osteosarcoma. Int J Immunopathol Pharm. 2019;33:2058738418820743.

    Article  CAS  Google Scholar 

  34. Xu R, Feng F, Yu X, Liu Z, Lao L. LncRNA SNHG4 promotes tumour growth by sponging miR-224-3p and predicts poor survival and recurrence in human osteosarcoma. Cell Prolif. 2018;51:e12515.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Xu H. LncRNA SNHG15 regulates osteosarcoma progression in vitro and in vivo via sponging miR-346 and regulating TRAF4 expression. Open Life Sci. 2020;15:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng R, Zhang J, Chen J. lncRNA SNHG1 negatively regulates miRNA‑101‑3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med. 2019;43:1157–66.

    CAS  PubMed  Google Scholar 

  37. Wang Z, Wang Z, Liu J, Yang H. Long non-coding RNA SNHG5 sponges miR-26a to promote the tumorigenesis of osteosarcoma by targeting ROCK1. Biomed Pharmacother. 2018;107:598–605.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou S, Yu L, Xiong M, Dai G. LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating NotcH2 by sponging miR-195-5p. Biochem Biophys Res Commun. 2018;495:1822–32.

    Article  CAS  PubMed  Google Scholar 

  39. Hou XK, Mao JS. Long noncoding RNA SNHG14 promotes osteosarcoma progression via miR-433-3p/FBXO22 axis. Biochem Biophys Res Commun. 2020;523:766–72.

    Article  CAS  PubMed  Google Scholar 

  40. Xiao X, Jiang G, Zhang S, Hu S, Fan Y, Li G, et al. LncRNA SNHG16 contributes to osteosarcoma progression by acting as a ceRNA of miR-1285-3p. BMC Cancer. 2021;21:355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hao H, Wang L, Liu Q, Wu D, Xing H. LncRNA small nucleolar RNA host gene 8 promotes cell growth and migration of osteosarcoma in vitro and in vivo by functioning as a ceRNA of microRNA-876-5p. Am J Transl Res. 2020;12:3476–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, et al. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Ju C, Zhang W, Xie L. LncRNA SNHG20 is associated with clinical progression and enhances cell migration and invasion in osteosarcoma. IUBMB Life. 2018;70:1115–21.

    Article  CAS  PubMed  Google Scholar 

  44. Tang Z, Feng H, Shu L, Guo M, Qi B, Pu L, et al. Identification of two novel lipid metabolism-related long non-coding RNAs (SNHG17 and LINC00837) as potential signatures for osteosarcoma prognosis and precise treatment. BMC Med Genomics. 2023;16:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Chen M, Ma L, Dang X, Du G. LncRNA GAS5 suppresses the proliferation and invasion of osteosarcoma cells via the miR-23a-3p/PTEN/PI3K/AKT pathway. Cell Transpl. 2020;29:096368972095309.

    Article  Google Scholar 

  46. Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem. 2017;118:4772–81.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong GB, Jiang CQ, Yu XS, Liu ZD, Wang WL, Xu RD. Long noncoding RNA SNHG8 promotes the proliferation of osteosarcoma cells by downregulating miR-542-3p. J Biol Regul Homeost Agents. 2020;34:517–24.

    CAS  PubMed  Google Scholar 

  48. Zhu X, Yang G, Xu J, Zhang C. Silencing of SNHG6 induced cell autophagy by targeting miR-26a-5p/ULK1 signaling pathway in human osteosarcoma. Cancer Cell Int. 2019;19:82.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the impact of tumor microenvironment in osteosarcoma progression and metastasis. Cancers. 2023;15:5108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ge J, Liu M, Zhang Y, Xie L, Shi Z, Wang G. SNHG10/miR-141-3p/WTAP axis promotes osteosarcoma proliferation and migration. J Biochem Mol Toxicol. 2022;36:e23031.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Cao L, Wu J, Wang Q. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol. 2018;52:77–88.

    CAS  PubMed  Google Scholar 

  52. Li Z, Wang X, Liang S. Long non-coding RNA small nucleolar RNA host gene 1 knockdown suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-424-5p/FGF2 in vitro. Exp Ther Med. 2021;21:325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu N, Xu J, Zuo Z, Liu Y, Yan F, Han C. Downregulation of lncRNA SNHG12 reversed IGF1R-induced osteosarcoma metastasis and proliferation by targeting miR-195-5p. Gene. 2020;726:144145.

    Article  CAS  PubMed  Google Scholar 

  54. Ruan W, Wang P, Feng S, Xue Y, Li Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol. 2016;37:4065–73.

    Article  CAS  PubMed  Google Scholar 

  55. Zheng SN, Ge DW, Tang J, Yang J, Yan JW, Qiu JJ, et al. LncSNHG16 promotes proliferation and migration of osteosarcoma cells by targeting microRNA-146a-5p. Eur Rev Med Pharm Sci. 2019;23:96–104.

    CAS  Google Scholar 

  56. Wang X, Hu K, Chao Y, Wang L. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed Pharmacother. 2019;114:108798.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao S, Xiong W, Xu K. MiR-663a, regulated by lncRNA GAS5, contributes to osteosarcoma development through targeting MYL9. Hum Exp Toxicol. 2020;39:1607–18.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, et al. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res. 2020;30:885–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu S, Liu Y, Wang X, Wang J, Xi G. lncRNA SNHG10 promotes the proliferation and invasion of osteosarcoma via wnt/β-catenin signaling. Mol Ther Nucleic Acids. 2020;22:957–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang Z, Jiang C, Fang J. Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/wnt/β-catenin pathway. Biochem Biophys Res Commun. 2018;495:238–45.

    Article  CAS  PubMed  Google Scholar 

  61. Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K, et al. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol. 2017;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, et al. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 2024;9:1–46.

    Google Scholar 

  63. Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, et al. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract. 2023;251:154902.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 2018;17:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng Y, Zhao F, Zhang Z, Sun F, Wang M. Long noncoding RNA SNHG7 promotes the tumor growth and epithelial-to-mesenchymal transition via regulation of miR-34a signals in osteosarcoma. Cancer Biother Radiopharm. 2018;33:365–72.

    CAS  PubMed  Google Scholar 

  66. Wang W, Luo P, Guo W, Shi Y, Xu D, Zheng H, et al. LncRNA SNHG20 knockdown suppresses the osteosarcoma tumorigenesis through the mitochondrial apoptosis pathway by miR-139/RUNX2 axis. Biochem Biophys Res Commun. 2018;503:1927–33.

    Article  CAS  PubMed  Google Scholar 

  67. Bu J, Guo R, Xu XZ, Luo Y, Liu JF. LncRNA SNHG16 promotes epithelial-mesenchymal transition by upregulating ITGA6 through miR-488 inhibition in osteosarcoma. J Bone Oncol. 2021;27:100348.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhu C, Cheng D, Qiu X, Zhuang M, Liu Z. Long noncoding RNA SNHG16 promotes cell proliferation by sponging MicroRNA-205 and upregulating ZEB1 expression in osteosarcoma. Cell Physiol Biochem. 2018;51:429–40.

    Article  CAS  PubMed  Google Scholar 

  69. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Su P, Mu S, Wang Z. Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA Cell Biol. 2019;38:170–5.

    Article  CAS  PubMed  Google Scholar 

  71. Ju C, Zhou R, Sun J, Zhang F, Tang X, Chen KK, et al. LncRNA SNHG5 promotes the progression of osteosarcoma by sponging the miR-212-3p/SGK3 axis. Cancer Cell Int. 2018;18:141.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 2021;26:512–33.

    Article  PubMed  Google Scholar 

  73. Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, et al. Autophagy and cancer drug resistance in dialogue: pre-clinical and clinical evidence. Cancer Lett. 2023;570:216307.

    Article  CAS  PubMed  Google Scholar 

  74. Liu K, Hou Y, Liu Y, Zheng J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J Biomed Sci. 2017;24:46.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhao A, Zhao Z, Liu W, Cui X, Wang N, Wang Y, et al. Carcinoma-associated fibroblasts promote the proliferation and metastasis of osteosarcoma by transferring exosomal LncRNA SNHG17. Am J Transl Res. 2021;13:10094–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. He M, Wang Y, Xie J, Pu J, Shen Z, Wang A, et al. M7G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene. 2023;43:341–53.

    Article  PubMed  Google Scholar 

  77. Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res. 2022;12:816–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu Y, Gu S, Li H, Wang J, Wei C, Liu Q. SNHG16 promotes osteosarcoma progression and enhances cisplatin resistance by sponging miR-16 to upregulate ATG4B expression. Biochem Biophys Res Commun. 2019;518:127–33.

    Article  CAS  PubMed  Google Scholar 

  79. Li G, Yan X. Long non-coding RNA GAS5 promotes cisplatin-chemosensitivity of osteosarcoma cells via microRNA-26b-5p/TP53INP1 axis. J Orthop Surg Res. 2023;18:890.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Rao D, Ma H, Kong D, Xu X, Lu H. LncRNA SNHG15 contributes to doxorubicin resistance of osteosarcoma cells through targeting the miR-381-3p/GFRA1 axis. Open Life Sci. 2020;15:871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou B, Li L, Li Y, Sun H, Zeng C. Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis. Biomed Pharmacother. 2018;106:850–7.

    Article  CAS  PubMed  Google Scholar 

  82. Yoshida A. Osteosarcoma: old and new challenges. Surg Pathol Clin. 2021;14:567–83.

    Article  PubMed  Google Scholar 

  83. Sun Y, Zhang C, Fang Q, Zhang W, Liu W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med. 2023;21:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heidari N, Vosough M, Bagherifard A, Sami SH, Sarabi PA, Behmanesh A. et al. Exploring circulating MiRNA signature for osteosarcoma detection: bioinformatics-based analyzing and validation. Pathol Res Pract. 2024;263:155615

    Article  CAS  PubMed  Google Scholar 

  85. Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors. 2021;11:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Z, Dou P, Liu T, He S. Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cell Physiol Biochem. 2017;42:1407–19.

    Article  CAS  PubMed  Google Scholar 

  87. Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long non-coding RNA DANCR in cancer: roles, mechanisms, and implications. Front Cell Dev Biol. 2021;9:753706.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kortam S, Lu Z, Zreiqat H. Recent advances in drug delivery systems for osteosarcoma therapy and bone regeneration. Commun Mater. 2024;5:1–20.

    Article  Google Scholar 

  89. Zhang X, Gao X, Xu J, Zhang Z, Lin T, Zhang X, et al. The role of lncRNA and miRNA on the effects of occurrence and development of osteosarcoma. Int Immunopharmacol. 2025;144:113726.

    Article  CAS  PubMed  Google Scholar 

  90. Qin S, Hu Y, Luo H, Chu W, Deng R, Ma J. Metal ions and nanomaterials for targeted bone cancer immunotherapy. Front Immunol. 2025;16:1513834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, et al. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 2019;30:907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol. 2023;149:6785–97.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Adewuyi E, Chorya H, Muili A, Moradeyo A, Kayode A, Naik A, et al. Chemotherapy, immunotherapy, and targeted therapy for osteosarcoma: recent advancements. Crit Rev Oncol Hematol. 2025;206:104575.

    Article  PubMed  Google Scholar 

  94. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, et al. The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci. 2019;15:1460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang W, Li JZ, Tai QY, Tang JJ, Huang YH, Gao SB. LncRNA DANCR regulates osteosarcoma migration and invasion by targeting miR-149/MSI2 axis. Eur Rev Med Pharm Sci. 2020;24:6551–60.

    CAS  Google Scholar 

  96. Li L, Zhang Y, Gao Y, Hu Y, Wang R, Wang S, et al. LncSNHG14 promotes nutlin3a resistance by inhibiting ferroptosis via the miR-206 /SLC7A11 axis in osteosarcoma cells. Cancer Gene Ther. 2023;30:704–15.

    Article  CAS  PubMed  Google Scholar 

  97. Liao S, Xing S, Ma Y. LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma. Cancer Chemother Pharm. 2019;83:1065–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangxi Province, China (No. 20232ACB206043, 20192ACBL21041) and Jiangxi Province “Double Thousand Plan” Talent Project, China.

Funding

The Natural Science Foundation of Jiangxi Province, China (Project Nos. 20232ACB206043 and 20192ACBL21041) provided financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

JL provided the research topic and ideas for the manuscript, whereas YZ wrote the manuscript and created the charts. JL and JW reviewed and edited the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jiaming Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J. & Liu, J. LncSNHGs: new targets in osteosarcoma. Cancer Gene Ther 32, 1031–1041 (2025). https://doi.org/10.1038/s41417-025-00952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00952-2

Search

Quick links