Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCL-xL dependency in chromophobe renal cell carcinoma

Abstract

Chromophobe renal cell carcinoma (ChRCC) is the third most common subtype of kidney cancer, with limited therapeutic options. Using BH3 profiling to screen ChRCC-derived cell lines, we discovered that BH3 peptides targeting BCL-xL promote apoptosis in ChRCC. Downregulation of BCL2L1 is sufficient to induce apoptosis in ChRCC-derived cells, consistent with our screening results. BCL2L1, encoding BCL-xL, is fourfold upregulated in ChRCC compared to normal kidney and has the second highest expression in The Cancer Genome Atlas. BCL2L1 downregulation enhances MCL-1 expression, suggesting a possible compensatory role for MCL-1. Based on these results, we evaluated two BH3 mimetics, A-1331852 (targeting BCL-xL) and S63845 (targeting MCL-1). Their combination resulted in 80% cell death. DT2216, a proteolysis-targeting chimera (PROTAC) that targets BCL-xL for degradation, induced cleaved PARP and caspase 3, indicators of apoptosis. ChRCC cells are known to be highly sensitive to ferroptosis. We combined A-1331852 and S63845 with IKE or RSL3 (ferroptosis-inducing drugs). BCL-xL and MCL-1 inhibition enhanced the susceptibility to ferroptosis, suggesting a link between apoptosis and ferroptosis in ChRCC. These data indicate that BCL-xL maintains ChRCC cell survival by suppressing apoptosis. The BCL-xL-specific PROTAC DT2216, currently in clinical trials, may provide an opportunity for ChRCC therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ChRCC cell lines are unprimed for apoptosis and dependent on BCL-xL for survival.
Fig. 2: Genetic knockdown of BCL2L1 (encoding BCL-xL) leads to increased apoptotic cell death.
Fig. 3: MCL-1 inhibition enhances the effect of BCL-xL inhibition on cell death in ChRCC.
Fig. 4: BCL-xL degradation by PROTACs induces apoptotic cell death in ChRCC.
Fig. 5: BH3 mimetics sensitize ChRCC to ferroptosis.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article, and/or SI Appendix.

References

  1. Henske EP, Cheng L, Hakimi AA, Choueiri TK, Braun DA. Chromophobe renal cell carcinoma. Cancer Cell. 2023;41:1383–8.

    Article  CAS  PubMed  Google Scholar 

  2. Msaouel P, Genovese G, Tannir NM. Renal cell carcinoma of variant histology: biology and therapies. Hematol Oncol Clin North Am. 2023;37:977–92.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roldan-Romero JM, Santos M, Lanillos J, Caleiras E, Anguera G, Maroto P, et al. Molecular characterization of chromophobe renal cell carcinoma reveals mTOR pathway alterations in patients with poor outcome. Mod Pathol. 2020;33:2580–90.

    Article  CAS  PubMed  Google Scholar 

  4. Lindgren D, Eriksson P, Krawczyk K, Nilsson H, Hansson J, Veerla S, et al. Cell-type-specific gene programs of the normal human nephron define kidney cancer subtypes. Cell Rep. 2017;20:1476–89.

    Article  CAS  PubMed  Google Scholar 

  5. Voss MH, Bastos DA, Karlo CA, Ajeti A, Hakimi AA, Feldman DR, et al. Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann Oncol. 2014;25:663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hutson TE, Michaelson MD, Kuzel TM, Agarwal N, Molina AM, Hsieh JJ, et al. A single-arm, multicenter, phase 2 study of lenvatinib plus everolimus in patients with advanced non-clear cell renal cell carcinoma. Eur Urol. 2021;80:162–70.

    Article  CAS  PubMed  Google Scholar 

  7. Zarrabi K, Walzer E, Zibelman M. Immune checkpoint inhibition in advanced non-clear cell renal cell carcinoma: leveraging success from clear cell histology into new opportunities. Cancers. 2021;13:3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Casuscelli J, Becerra MF, Seier K, Manley BJ, Benfante N, Redzematovic A, et al. Chromophobe renal cell carcinoma: results from a large single-institution series. Clin Genitourin Cancer. 2019;17:373–.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapur P, Zhong H, Le D, Mukhopadhyay R, Miyata J, Carrillo D, et al. Molecular underpinnings of dedifferentiation and aggressiveness in chromophobe renal cell carcinoma. JCI Insight. 2024;9:e176743.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Priolo C, Khabibullin D, Reznik E, Filippakis H, Ogórek B, Kavanagh TR, et al. Impairment of gamma-glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma. Proc Natl Acad Sci USA. 2018;115:E6274–E6282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao Y, Clima R, Busch J, Rabien A, Kilic E, Villegas SL, et al. Decreased mitochondrial DNA content drives OXPHOS dysregulation in chromophobe renal cell carcinoma. Cancer Res. 2020;80:3830–40.

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  13. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Certo M, Moore VDG, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–65.

    Article  CAS  PubMed  Google Scholar 

  15. Del Gaizo Moore V, Letai A. BH3 profiling-measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 2013;332:202–5.

    Article  PubMed  Google Scholar 

  16. Chonghaile TN, Sarosiek KA, Vo T-T, Ryan JA, Tammareddi A, Moore VDG, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–33.

    Article  CAS  PubMed Central  Google Scholar 

  17. Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. 2017;31:142–56.

    Article  CAS  PubMed  Google Scholar 

  18. Fraser C, Ryan J, Sarosiek K. BH3 profiling: a functional assay to measure apoptotic priming and dependencies. Methods Mol Biol Clifton NJ. 2019;1877:61–76.

    Article  CAS  Google Scholar 

  19. Sarosiek KA, Wood KC. Endogenous and imposed determinants of apoptotic vulnerabilities in cancer. Trends Cancer. 2023;9:96–110.

    Article  CAS  PubMed  Google Scholar 

  20. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007;12:171–85.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan JA, Brunelle JK, Letai A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Proc Natl Acad Sci. 2010;107:12895–12900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson MA, Deng J, Seymour JF, Tam C, Kim SY, Fein J, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127:3215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vo T-T, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Touzeau C, Ryan J, Guerriero J, Moreau P, Chonghaile TN, Le Gouill S, et al. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia. 2016;30:761–4.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, et al. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci. 2022;119:e2122840119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Vocke CD, Ricketts CJ, Wei D, Padilla-Nash HM, Lang M, et al. Genomic and metabolic characterization of a chromophobe renal cell carcinoma cell line model (UOK276). Genes Chromosomes Cancer. 2017;56:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakouny Z, Braun DA, Shukla SA, Pan W, Gao X, Hou Y, et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat Commun. 2021;12:808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fifield AL, Hanavan PD, Faigel DO, Sergienko E, Bobkov A, Meurice N, et al. Molecular inhibitor of QSOX1 suppresses tumor growth in vivo. Mol Cancer Ther. 2020;19:112–22.

    Article  CAS  PubMed  Google Scholar 

  31. Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell. 2013;51:751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fraser CS, Spetz JKE, Qin X, Presser A, Choiniere J, Li C, et al. Exploiting endogenous and therapy-induced apoptotic vulnerabilities in immunoglobulin light chain amyloidosis with BH3 mimetics. Nat Commun. 2022;13:5789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160:977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grubb T, Maganti S, Krill-Burger JM, Fraser C, Stransky L, Radivoyevitch T, et al. A mesenchymal tumor cell state confers increased dependency on the BCL-XL antiapoptotic protein in kidney cancer. Clin Cancer Res J Am Assoc Cancer Res. 2022;28:4689–701.

    Article  CAS  Google Scholar 

  35. Schoenfeld DA, Moutafi M, Martinez S, Djureinovic D, Merkin RD, Adeniran A, et al. Immune dysfunction revealed by digital spatial profiling of immuno-oncology markers in progressive stages of renal cell carcinoma and in brain metastases. J Immunother Cancer. 2023;11:e007240.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald M-C, O’Halloran PJ, Kerrane SA, Ní Chonghaile T, Connolly NMC, Murphy BM. The identification of BCL-XL and MCL-1 as key anti-apoptotic proteins in medulloblastoma that mediate distinct roles in chemotherapy resistance. Cell Death Dis. 2023;14:705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T, et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019;10:342.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weeden CE, Ah-Cann C, Holik AZ, Pasquet J, Garnier J-M, Merino D, et al. Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene. 2018;37:4475–88.

    Article  CAS  PubMed  Google Scholar 

  39. Galas-Filipowicz D, Chavda SJ, Gong J-N, Huang DCS, Khwaja A, Yong K. Co-operation of MCL-1 and BCL-XL anti-apoptotic proteins in stromal protection of MM cells from carfilzomib mediated cytotoxicity. Front Oncol. 2024;14:1394393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qin X, Presser A, Johnson L, Matoba Y, Shay B, Xu W, et al. Paclitaxel-induced mitotic arrest results in a convergence of apoptotic dependencies that can be safely exploited by BCL-XL degradation to overcome cancer chemoresistance. 2025. Available from: https://doi.org/10.1101/2025.06.24.661170.

  41. Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang X, Yu W-Y, Zhu C-M, Zhao N, Zhao W, Xie T-T, et al. Chromosome instability functions as a potential therapeutic reference by enhancing chemosensitivity to BCL-XL inhibitors in colorectal carcinoma. Acta Pharm Sin. 2024;45:2420–31.

    Article  CAS  Google Scholar 

  44. Judd AS, Bawa B, Buck WR, Tao Z-F, Li Y, Mitten MJ, et al. BCL-XL-targeting antibody-drug conjugates are active in preclinical models and mitigate on-mechanism toxicity of small-molecule inhibitors. Sci Adv. 2024;10:eado7120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu P, Zhang X, Duan D, Zhao L. Organelle-specific mechanisms in crosstalk between apoptosis and ferroptosis. Oxid Med Cell Longev. 2023;2023:3400147.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 2020;27:2635–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022;13:974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26:319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovacs A, Kovacs G. Low chromosome number in chromophobe renal cell carcinomas. Genes Chromosomes Cancer. 1992;4:267–8.

    Article  CAS  PubMed  Google Scholar 

  51. Speicher MR, Schoell B, du Manoir S, Schröck E, Ried T, Cremer T, et al. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am J Pathol. 1994;145:356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brunelli M, Delahunt B, Gobbo S, Tardanico R, Eccher A, Bersani S, et al. Diagnostic usefulness of fluorescent cytogenetics in differentiating chromophobe renal cell carcinoma from renal oncocytoma. Am J Clin Pathol. 2010;133:116–26.

    Article  PubMed  Google Scholar 

  53. Akhtar M, Chantziantoniou N. Flow cytometric and quantitative image cell analysis of dna ploidy in renal chromophobe cell carcinoma. Hum Pathol. 1998;29:1181–8.

    Article  CAS  PubMed  Google Scholar 

  54. Di Mauro I, Ambrosetti D, Vignot L, Roussel J, Dadone-Montaudie B, Peyron A, et al. Detection of tetraploidization in chromophobe renal cell carcinoma: Insights and pitfalls. Genes Chromosomes Cancer. 2020;59:675–87.

    Article  Google Scholar 

  55. Collins K, Acosta AM, Siegmund SE, Cheng L, Hirsch MS, Idrees MT. Genetic profiling uncovers genome-wide loss of heterozygosity and provides insight into mechanisms of sarcomatoid transformation in chromophobe renal cell carcinoma. Mod Pathol J U S Can Acad Pathol Inc. 2024;37:100396.

    CAS  Google Scholar 

  56. Casuscelli J, Weinhold N, Gundem G, Wang L, Zabor EC, Drill E, et al. Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCI Insight. 2017;2:e92688.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Tuttle Family Fund and a gift from Gigi Cohen and Michael Levin.

Author information

Authors and Affiliations

Authors

Contributions

NM, XQ, SS, DK, CP, AAC, KAS, and EPH designed research; NM, XQ, SS, DK, WB, SS, JC, and MA performed research; XQ, AAC, and KAS contributed new reagents/analytic tools; NM, XQ, TH, KAS, and EPH, MA, and WB analyzed data; and NM and EPH wrote the paper; XQ, DK, CP, AAC, and KAS provided feedback on the paper.

Corresponding author

Correspondence to Elizabeth P. Henske.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with relevant guidelines and regulations. This in vitro study did not involve human participants, animals, or identifiable human images. Therefore, ethical approval from an ethics committee and informed consent were not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, N., Qin, X., Bzeih, W. et al. BCL-xL dependency in chromophobe renal cell carcinoma. Cancer Gene Ther 32, 1133–1143 (2025). https://doi.org/10.1038/s41417-025-00953-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00953-1

Search

Quick links