Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pentagamavunone-1 targets excessive MYCN/NCYM expression mediated by mitotic arrest to suppress hepatocellular carcinoma proliferation

Abstract

Hepatocellular carcinoma (HCC) is a common liver cancer often diagnosed at an advanced stage. While chemotherapies such as sorafenib is effective for some patients, others show poor responses, necessitating new treatments. Overexpression of MYCN/NCYM was recently shown to contribute to the development of HCC. This study investigated the effects of Pentagamavunone-1 (PGV-1), a curcumin analog with strong antiproliferative properties, on HCC cells expressing MYCN/NCYM. PGV-1 was more effective than curcumin and sorafenib in inhibiting HCC cell proliferation by inducing mitotic arrest, oxidative stress, and senescence. In MYCN-positive JHH-7 cells, PGV-1 treatment increased phosphorylation of aurora A, cyclin B1, and PLK1. PGV-1 also suppressed MYCN/NCYM transcription and destabilized MYCN protein by inducing phosphorylation at Ser54 and Thr58. In a xenograft model, PGV-1 significantly reduced tumor formation and growth. These findings highlight PGV-1’s potential as a targeted therapy for MYCN-overexpressing HCC, warranting further development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antiproliferative effects of PGV-1 in human hepatocellular carcinoma (HCC) cells.
Fig. 2: PGV-1 irreversibly inhibits JHH-7 cell growth.
Fig. 3: PGV-1 halts cell cycle progression in mitosis and induces cellular senescence.
Fig. 4: PGV-1 induces the phosphorylation of major kinases PLK1, aurora A, and cyclin B1 following prometaphase arrest.
Fig. 5: Pentagamavunone-1 suppresses MYCN/NCYM mRNA expression and accelerates the degradation of the MYCN oncoprotein by promoting the phosphorylation of Thr58 and Ser54.
Fig. 6: Pentagamavunone-1 inhibits HCC xenograft tumors in vivo.
Fig. 7: Pentagamavunone-1 inhibits HCC xenograft tumors in vivo.

Similar content being viewed by others

Data availability

All data generated or analyzed during the present study are included in the article and its supplementary information files.

References

  1. Balogh J, Victor D 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yarchoan M, Agarwal P, Villanueva A, Rao S, Dawson LA, Llovet JM, et al. Recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res. 2019;79:4326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.

    Article  CAS  PubMed  Google Scholar 

  4. Knoepfler PS, Kenney AM. Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle. 2006;5:47–52.

    Article  CAS  PubMed  Google Scholar 

  5. Suenaga Y, Kaneko Y, Matsumoto D, Hossain MS, Ozaki T, Nakagawara A. Positive auto-regulation of MYCN in human neuroblastoma. Biochem Biophys Res Commun. 2009;390:21–26.

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, et al. p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res. 2010;70:1377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin XY, Gailhouste L. Non-genomic control of dynamic MYCN gene expression in liver cancer. Front Oncol. 2020;10:618515.

    Article  PubMed  Google Scholar 

  8. Qin XY, Suzuki H, Honda M, Okada H, Kaneko S, Inoue I, et al. Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc Natl Acad Sci USA. 2018;115:4969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin XY, Su T, Yu W, Kojima S. Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells. Cell Death Dis. 2020;11:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu J, Ou Z, Lei Y, Chen L, Su Q, Zhang K. LncRNA MYCNOS facilitates proliferation and invasion in hepatocellular carcinoma by regulating miR-340. Hum Cell. 2020;33:148–58.

    Article  CAS  PubMed  Google Scholar 

  11. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM. The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell. 2005;9:327–38.

    Article  CAS  PubMed  Google Scholar 

  12. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell. 2013;24:75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, et al. Polo-like kinase-1 regulates Myc stabilization and activates a feedforward circuit promoting tumor cell survival. Mol Cell. 2016;64:493–506.

    Article  CAS  PubMed  Google Scholar 

  14. Dong J, Zhai B, Sun W, Hu F, Cheng H, Xu J. Activation of phosphatidylinositol 3-kinase/AKT/snail signaling pathway contributes to epithelial-mesenchymal transition-induced multi-drug resistance to sorafenib in hepatocellular carcinoma cells. PLoS One. 2017;12:e0185088.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Gao ZH, Qu XJ. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharm Toxicol. 2015;116:216–21.

    Article  CAS  Google Scholar 

  16. Meiyanto E, Septisetyani EP, Larasati YA, Kawaichi M. Curcumin analog pentagamavunon-1 (PGV-1) sensitizes widr cells to 5-fluorouracil through inhibition of NF-kappaB activation. Asian Pac J Cancer Prev. 2018;19:49–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Meiyanto E, Husnaa U, Kastian RF, Putri H, Larasati YA, Khumaira A, et al. The target differences of anti-tumorigenesis potential of curcumin and its analogues against HER-2 positive and triple-negative breast cancer cells. Adv Pharm Bull. 2021;11:188–96.

    Article  CAS  PubMed  Google Scholar 

  18. Meiyanto E, Putri H, Arum Larasati Y, Yudi Utomo R, Istighfari Jenie R, Ikawati M, et al. Anti-proliferative and anti-metastatic potential of curcumin analogue, pentagamavunon-1 (PGV-1), toward highly metastatic breast cancer cells in correlation with ROS generation. Adv Pharm Bull. 2019;9:445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Novitasari D, Kato J, Ikawati M, Putri DDP, Wulandari F, Widyarini S, et al. PGV-1 permanently arrests HepG2 cells in M phase and inhibits liver carcinogenesis in DMH-induced rats. J Appl Pharm Sci. 2023;13:204–11.

    CAS  Google Scholar 

  20. Lestari B, Nakamae I, Yoneda-Kato N, Morimoto T, Kanaya S, Yokoyama T, et al. Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Sci Rep. 2019;9:14867.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kamitani N, Nakamae I, Yoneda-Kato N, Kato JY, Sho M. Preclinical evaluation of pentagamavunone-1 as monotherapy and combination therapy for pancreatic cancer in multiple xenograft models. Sci Rep. 2022;12:22419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moordiani M, Novitasari D, Susidarti RA, Ikawati M, Kato J, Meiyanto E. Curcumin analogs PGV-1 and CCA-1.1 induce cell cycle arrest in human hepatocellular carcinoma cells with overexpressed MYCN. Indonesian Biomed J. 2023;15:141–9.

    Article  Google Scholar 

  23. Novitasari D, Nakamae I, Istighfari Jenie R, Yoneda-Kato N, Kato JY, Meiyanto E. Pentagamavunone-1 inhibits aggressive breast cancer cell proliferation through mitotic catastrophe and ROS-mediated activities: in vitro and in vivo studies. Saudi Pharm J. 2024;32:101892.

    Article  CAS  PubMed  Google Scholar 

  24. Novitasari D, Nakamae I, Yoneda-Kato N, Kato JY, Hippo Y, Suenaga Y, et al. The combination of sorafenib and PGV-1 inhibits the proliferation of hepatocellular carcinoma through c-Myc suppression in an additive manner: in vitro studies. Adv Pharm Pharm Sci. 2024;2024:4297953.

    Article  CAS  Google Scholar 

  25. Eberherr C, Beck A, Vokuhl C, Becker K, Haberle B, Von Schweinitz D, et al. Targeting excessive MYCN expression using MLN8237 and JQ1 impairs the growth of hepatoblastoma cells. Int J Oncol. 2019;54:1853–63.

    CAS  PubMed  Google Scholar 

  26. Hu L, Pan X, Hu J, Zeng H, Liu X, Jiang M, et al. Proteasome inhibitors decrease paclitaxel‑induced cell death in nasopharyngeal carcinoma with the accumulation of CDK1/cyclin B1. Int J Mol Med. 2021;48.

  27. Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L, et al. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol Cell Biol. 2009;29:1059–71.

    Article  CAS  PubMed  Google Scholar 

  28. Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and non-centrosomal microtubule-organizing centers (MTOCs) in Drosophila melanogaster. Cells 2018;7.

  29. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem. 2003;278:51786–95.

    Article  CAS  PubMed  Google Scholar 

  30. Asteriti IA, De Mattia F, Guarguaglini G. Cross-talk between AURKA and Plk1 in mitotic entry and spindle assembly. Front Oncol. 2015;5:283.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joukov V, De Nicolo A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci Signal. 2018;11.

  32. Park JG, Jeon H, Shin S, Song C, Lee H, Kim NK, et al. Structural basis for CEP192-mediated regulation of centrosomal AURKA. Sci Adv. 2023;9:eadf8582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu H, Yao X. Cyclin B1: conductor of mitotic symphony orchestra. Cell Res. 2008;18:218–20.

    Article  CAS  PubMed  Google Scholar 

  34. Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM. Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol. 2007;5:e123.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Allan LA, Camacho Reis M, Ciossani G, Huis In ‘t Veld PJ, Wohlgemuth S, Kops GJ, et al. Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J. 2020;39:e103180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bentley AM, Normand G, Hoyt J, King RW. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Mol Biol Cell. 2007;18:4847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene. 2004;23:4362–70.

    Article  CAS  PubMed  Google Scholar 

  38. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12:385–92.

    Article  CAS  PubMed  Google Scholar 

  39. Wu Q, Li Z, Huang Y, Qian D, Chen M, Xiao W, et al. Oxidative stress delays prometaphase/metaphase of the first cleavage in mouse zygotes via the MAD2L1-mediated spindle assembly checkpoint. Oxid Med Cell Longev. 2017;2017:2103190.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article  CAS  PubMed  Google Scholar 

  41. Barra V, Chiavetta RF, Titoli S, Provenzano IM, Carollo PS, Di Leonardo A. Specific irreversible cell-cycle arrest and depletion of cancer cells obtained by combining curcumin and the flavonoids quercetin and fisetin. Genes. 2022;13.

  42. Suenaga Y, Yamamoto M, Sakuma T, Sasada M, Fukai F, Ohira M, et al. TAp63 represses transcription of MYCN/NCYM gene and its high levels of expression are associated with favorable outcome in neuroblastoma. Biochem Biophys Res Commun. 2019;518:311–8.

    Article  CAS  PubMed  Google Scholar 

  43. Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol. 2000;20:2423–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.

    Article  CAS  PubMed  Google Scholar 

  45. Yang X, Tian X, Zhao P, Wang Z, Sun X. Paclitaxel inhibits hepatocellular carcinoma tumorigenesis by regulating the circ_0005785/miR-640/GSK3β. Cell Biol Int. 2023;47:1170–82.

    Article  CAS  PubMed  Google Scholar 

  46. Okano J, Nagahara T, Matsumoto K, Murawaki Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol Rep. 2007;17:1195–1200.

    CAS  PubMed  Google Scholar 

  47. Brough D, Amos H, Turley K, Murkin J. Trends in subcutaneous tumour height and impact on measurement accuracy. Cancer Inf. 2023;22:11769351231165181.

    Article  Google Scholar 

  48. Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: a structural and functional perspective. Elife 2020;9.

  49. Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharm Sin. 2017;38:614–22.

    Article  CAS  Google Scholar 

  50. Chen C, Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987;7:2745–52.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Yoshitaka Hippo and Yusuke Suenaga in the Chiba Cancer Center for their discussions and suggestions, Michiyo Ueno for her technical assistance, and the staff in the Life Science Collaboration Center (LiSCo), NAIST for the support in conducting animal experiments. This research was supported by AMED under Grant Number JP23jm0210092, by JSPS KAKENHI Grant Number JP25K10492 and by the Iida Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

DN, EM, and JyK designed the experiments. DN, IN, and JyK performed the experiments. DN, IN, NYK, EM, and JyK analyzed the data. DN and JyK wrote the manuscript. DN, NYK, EM, and JyK edited the manuscript.

Corresponding author

Correspondence to Jun-ya Kato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with NAIST guidelines and regulations. The experimental protocols used in the present study were approved by the NAIST Institutional and Licensing Committees (reference number 1805). The study is reported in accordance with ARRIVE guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novitasari, D., Nakamae, I., Yoneda-Kato, N. et al. Pentagamavunone-1 targets excessive MYCN/NCYM expression mediated by mitotic arrest to suppress hepatocellular carcinoma proliferation. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00956-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-025-00956-y

Search

Quick links