Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integration of humanized ROBO1 CAR in PD-1 locus in natural killer cells delivers synergistic tumor-killing effect against non-small cell lung cancer

Abstract

Lung cancer is the most common cancer and one of the leading causes of cancer-related deaths in the world, however, the treatment of non-small cell lung cancer (NSCLC) is still limited, and it is a clinically urgent problem. ROBO1 is an important surface receptor on tumor cells, but the role of humanized chimeric antigen receptor (CAR) modified natural killer (NK) cells targeting ROBO1 in NSCLC is rarely explored. Furthermore, the role of PD-1 in NK cell killing tumor cells remains controversial. In this study, we identified the expression pattern of ROBO1 in lung squamous cell carcinoma (LUSC) by searching biological information databases. We constructed hROBO1-CAR-NK-92 cells and performed functional identification.We inserted the hROBO1-CAR at the PD-1 locus and performed functional detection in vitro and in vivo. The results showed that ROBO1 expression was significantly increased in LUSC. After inserting the hROBO1-CAR sequence at the PD-1 locus, the PD-1-KO-hROBO1-CAR-NK-92 cells had the best long-term killing ability and cytokine secretion ability, and had a significant inhibitory effect on tumor growth in the mouse xenograft model. We also observed that the long-term killing ability of PD-1-KO-hROBO1-CAR-NK-92 cells was achieved by inhibiting cell senescence via knocking out PD-1. These studies proposed ROBO1 as a key target for CAR-NK therapy in NSCLC and integrated hROBO1 CAR in PD-1 locus in NK cells, resulting in synergistic tumor killing effects in NSCLC, presenting a new treatment strategy for solid tumor treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Humanization and specificity detection of ROBO1 antibody.
Fig. 2: Construction, identification, and characterization of hROBO1-CAR-NK cells.
Fig. 3: hROBO1-CAR-NK-92 cells induce cell lysis of human solid tumor cell lines in vitro.
Fig. 4: Knocking in the CAR at the PD-1 locus enhanced long-term lysis and cytokine release of hROBO1-CAR-NK-92.
Fig. 5: PD-1-KO-hROBO1-CAR-NK-92 cells inhibited tumor growth in vivo in the Xenotransplantation model of lung cancer cells.
Fig. 6: PD-1-KO reduces the H1299 cells-induced cell senescence of hROBO1-CAR-NK-92 cells.
Fig. 7: PD-1 KO reduces SASP components, but not apoptosis of hROBO1-CAR-NK-92 cells induced by PMA.
Fig. 8: Inhibition of PD-1 enhances the killing effect of hROBO1 on NSCLC cells.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398:535–54.

    Article  PubMed  Google Scholar 

  2. Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023;22:40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fenton GA, Mitchell DA. Cellular cancer immunotherapy development and manufacturing in the clinic. Clin Cancer Res. 2023;29:843–57.

    Article  CAS  PubMed  Google Scholar 

  4. Qian K, Li G, Zhang S, Fu W, Li T, Zhao J, et al. CAR‐T‐cell products in solid tumors: Progress, challenges, and strategies. Interdiscip Med. 2024;2. https://doi.org/10.1002/inmd.20230047.

  5. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021;14:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klingemann H. The NK-92 cell line-30 years later: its impact on natural killer cell research and treatment of cancer. Cytotherapy. 2023;25:451–7.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res. 2022;10:12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Velasco-de Andres M, Munoz-Sanchez G, Carrillo-Serradell L, Gutierrez-Hernandez MDM, Catala C, Isamat M, et al. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol. 2023;53:e2250184.

    Article  PubMed  Google Scholar 

  9. Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021;14:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang L, Sun J, Huang D. Role of Slit/Robo signaling pathway in bone metabolism. Int J Biol Sci. 2022;18:1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell. 1999;96:807–18.

    Article  CAS  PubMed  Google Scholar 

  12. Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO pathway in liver fibrosis and cancer. Biomolecules. 2023;13. https://doi.org/10.3390/biom13050785.

  13. Erskine L, Williams SE, Brose K, Kidd T, Rachel RA, Goodman CS, et al. Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits. J Neurosci. 2000;20:4975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahirwar DK, Peng B, Charan M, Misri S, Mishra S, Kaul K, et al. Slit2/Robo1 signaling inhibits small-cell lung cancer by targeting beta-catenin signaling in tumor cells and macrophages. Mol Oncol. 2023;17:839–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang PH, Hwang-Verslues WW, Chang YC, Chen CC, Hsiao M, Jeng YM, et al. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/beta-catenin pathway. Cancer Res. 2012;72:4652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway. J Cancer. 2021;12:2735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128:4654–68.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020;38:685–700.

    Article  CAS  PubMed  Google Scholar 

  20. Hu Y, Zu C, Zhang M, Wei G, Li W, Fu S, et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin’s lymphoma: a first-in-human phase I study. EClinicalMedicine. 2023;60:102010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng M, Zeng Y, Liu Y, Wang X, Chen N, Zhang M, et al. Increased PD-1(+) NK cell subset in the older population. Int J Gen Med. 2024;17:651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li S, Gao K, Yao D. Comprehensive analysis of angiogenesis associated genes and tumor microenvironment infiltration characterization in cervical cancer. Heliyon. 2024;10:e33277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Dao JJ, Li Q, Liu C, Qiao CM, Cui C, et al. Neuregulin 1 mitigated prolactin deficiency through enhancing TRPM8 signaling under the influence of melatonin in senescent pituitary lactotrophs. Int J Biol Macromol. 2024;275:133659.

    Article  CAS  PubMed  Google Scholar 

  24. Peng Y, Zhang W, Chen Y, Zhang L, Shen H, Wang Z, et al. Engineering c-Met-CAR NK-92 cells as a promising therapeutic candidate for lung adenocarcinoma. Pharm Res. 2023;188:106656.

    Article  CAS  Google Scholar 

  25. Kang W, Ye C, Yang Y, Lou YR, Zhao M, Wang Z, et al. Identification of anoikis-related gene signatures and construction of the prognosis model in prostate cancer. Front Pharm. 2024;15:1383304.

    Article  CAS  Google Scholar 

  26. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

    Article  CAS  PubMed  Google Scholar 

  27. Kath J, Du W, Pruene A, Braun T, Thommandru B, Turk R, et al. Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol Ther Methods Clin Dev. 2022;25:311–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pesini C, Hidalgo S, Arias MA, Santiago L, Calvo C, Ocariz-Diez M, et al. PD-1 is expressed in cytotoxic granules of NK cells and rapidly mobilized to the cell membrane following recognition of tumor cells. Oncoimmunology. 2022;11:2096359.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Quixabeira DCA, Pakola S, Jirovec E, Havunen R, Basnet S, Santos JM, et al. Boosting cytotoxicity of adoptive allogeneic NK cell therapy with an oncolytic adenovirus encoding a human vIL-2 cytokine for the treatment of human ovarian cancer. Cancer Gene Ther. 2023;30:1679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Huang W, Guo Y, Zhou Y, Zhi C, Chen J, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol. 2022;112:901–11.

    Article  CAS  PubMed  Google Scholar 

  31. Hoy SM. Sintilimab: first global approval. Drugs. 2019;79:341–6.

    Article  CAS  PubMed  Google Scholar 

  32. Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol. 2025;205:104553.

    Article  PubMed  Google Scholar 

  33. Wu N, Yang N, Zhang S, Wu H, Fang X, Lin W, et al. Chimeric antigen receptor NK cells for breast cancer immunotherapy. Cancer Treat Rev. 2025;137:102943.

    Article  CAS  PubMed  Google Scholar 

  34. Lin H, Yang X, Ye S, Huang L, Mu W. Antigen escape in CAR-T cell therapy: mechanisms and overcoming strategies. Biomed Pharmacother. 2024;178:117252.

    Article  CAS  PubMed  Google Scholar 

  35. Aparicio-Perez C, Carmona M, Benabdellah K, Herrera C. Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL. Front Immunol. 2023;14:1165870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dehbashi M, Hojati Z, Motovali-Bashi M, Ganjalikhany MR, Cho WC, Shimosaka A, et al. A novel CAR expressing NK cell targeting CD25 with the prospect of overcoming immune escape mechanism in cancers. Front Oncol. 2021;11:649710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren Y, Xue M, Hui X, Liu X, Farooq MA, Chen Y, et al. Chimeric cytokine receptor TGF-beta RII/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer. Pharm Res. 2025;212:107637.

    Article  CAS  Google Scholar 

  38. Luo J, Guo M, Huang M, Liu Y, Qian Y, Liu Q, et al. Neoleukin-2/15-armored CAR-NK cells sustain superior therapeutic efficacy in solid tumors via c-Myc/NRF1 activation. Sig Transduct Target Ther. 2025;10:78.

    Article  CAS  Google Scholar 

  39. Cichocki F, Goodridge JP, Bjordahl R, Mahmood S, Davis ZB, Gaidarova S, et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood. 2022;140:2451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong Y, Chen W, Chen X, He Y, Jiang H, Zhang X, et al. An injectable epigenetic autophagic modulatory hydrogel for boosting umbilical cord blood NK cell therapy prevents postsurgical relapse of triple-negative breast cancer. Adv Sci. 2022;9:e2201271.

    Article  Google Scholar 

  41. Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao Y, et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell. 2023;41:272–87.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan M, Guo H, Li J, Sui C, Qin Y, Wang J, et al. Slit2 and Robo1 induce opposing effects on metastasis of hepatocellular carcinoma Sk-hep-1 cells. Int J Oncol. 2016;49:305–15.

    Article  CAS  PubMed  Google Scholar 

  43. Waldmann H. Human monoclonal antibodies: the benefits of humanization. Methods Mol Biol. 2019;1904:1–10.

    Article  CAS  PubMed  Google Scholar 

  44. Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RR, Elizabeth TA, Aleman-Aguilar JP, et al. Production of monoclonal antibodies for therapeutic purposes: a review. Int Immunopharmacol. 2023;120:110376.

    Article  CAS  PubMed  Google Scholar 

  45. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farooq R, Hussain K, Nazir S, Javed MR, Masood N. CRISPR/Cas9; a robust technology for producing genetically engineered plants. Cell Mol Biol. 2018;64:31–8.

    Article  PubMed  Google Scholar 

  47. Shi J, Li S, Shao R, Jiang Y, Qiao Y, Liu J, et al. Electrochemiluminescence aptasensing method for ultrasensitive determination of lipopolysaccharide based on CRISPR-Cas12a accessory cleavage activity. Talanta. 2024;272:125828.

    Article  CAS  PubMed  Google Scholar 

  48. Balke-Want H, Keerthi V, Gkitsas N, Mancini AG, Kurgan GL, Fowler C, et al. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol Cancer. 2023;22:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Glaser V, Flugel C, Kath J, Du W, Drosdek V, Franke C, et al. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Genome Biol. 2023;24:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature. 2022;609:369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S. Reversing T-cell exhaustion in cancer: lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 2022;10:146–53.

    Article  CAS  PubMed  Google Scholar 

  52. Cichocki F, Bjordahl R, Gaidarova S, Mahmood S, Abujarour R, Wang H, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 2020;12. https://doi.org/10.1126/scitranslmed.aaz5618.

  53. Gray KD, McCloskey JE, Vedvyas Y, Kalloo OR, Eshaky SE, Yang Y, et al. PD1 blockade enhances ICAM1-directed CAR T therapeutic efficacy in advanced thyroid cancer. Clin Cancer Res. 2020;26:6003–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao Y, Chi Y, Chen Y, Wang W, Li H, Zheng W, et al. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat Commun. 2023;14:4373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang TW, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022;611:358–64.

    Article  CAS  PubMed  Google Scholar 

  56. Pippin JW, Kaverina N, Wang Y, Eng DG, Zeng Y, Tran U, et al. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J Clin Invest. 2022;132.

  57. Ogrodnik M. Cellular aging beyond cellular senescence: markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20:e13338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wong JKM, McCulloch TR, Alim L, Omer N, Mehdi AM, Tuong ZK, et al. TGF-beta signalling limits effector function capacity of NK cell anti-tumour immunity in human bladder cancer. EBioMedicine. 2024;104:105176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen B, Liu X, Yu P, Xie F, Kwan JSH, Chan WN, et al. H. pylori-induced NF-kappaB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med. 2023;13:e1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Viel S, Marcais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9:ra19.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82241053), Fundamental Research Funds for the Central Universities of Central South University (2020zzts772), Hunan Provincial Innovation Foundation for Postgraduate (CX20220321), and Postgraduate Innovative Project of Central South University (2021XQLX51).

Author information

Authors and Affiliations

Authors

Contributions

JHT, JZ, HSL, YZ and CXG conceptualized and designed this study. JHT performed most of the experiments, and J.Z performed partial experiments. JZ, CYT, JXD, CYZ, and YBL executed the acquisition and analysis of data. JHT, JZ and LJ prepared figures, performed statistical analysis, and wrote the manuscript. JHT, JZ, HSL,YZ, CXG, JXD, CYZ, YBL and LJ provided administrative, technical, or material support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Zhang, Hua-Shun Li, Yong Zhou or Cha-Xiang Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The experimental use of mice in the present study was approved by the Ethics Committee of the Institute of Clinical Pharmacology of Central South University (No. 2021-XMSB-0194) to keep with the guidelines of the National Institutes of Health.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, JH., Zhang, J., Tang, CY. et al. Integration of humanized ROBO1 CAR in PD-1 locus in natural killer cells delivers synergistic tumor-killing effect against non-small cell lung cancer. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-025-00957-x

Search

Quick links