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Interleukin 7 (IL-7) is an immunostimulatory cytokine essential for T cell development, proliferation, and maintenance. While IL-7
generates antitumor immunity, systemic IL-7 has not consistently produced strong anticancer effects. Achieving therapeutic
cytokine concentrations in tumors often requires high systemic doses, leading to toxicity. To address this, localized cytokine
expression within the tumor microenvironment (TME) has gained interest. One such approach involves cytokine expression by
oncolytic viruses (OVs) that selectively replicate in cancerous cells while sparing ‘normal’ cells. Additionally, non-replicative viral
vectors have become valuable tools for sustaining cytokine expression in the TME, inducing antitumor effects through non-lytic
mechanisms. To effectively harness IL-7’s antitumor potential, both oncolytic and non-lytic viruses have been engineered to express
IL-7, either alone or in combination with other immunomodulators, such as IL-12, IL-15, B7-1, or CCL19. Despite promising
advancements, no comprehensive review exists on IL-7 expression in virus-based immunotherapy for cancer. Therefore, this
manuscript aims to (i) summarize studies on viral IL-7 expression alone or with other immunomodulators, (ii) discuss the associated
immune mechanisms of action, and (iii) explore opportunities for co-expressing IL-7 with other key cytokines to optimize
immunovirotherapy strategies for cancer.
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INTRODUCTION
Interleukin 7 (IL-7), a common gamma (γ) chain cytokine family, is an
immunomodulatory cytokine naturally produced by stromal cells in
the bone marrow and epithelial cells in the thymus [1, 2]. IL-7 binds
to a heterodimeric receptor, which is formed by the IL-7 receptor
alpha chain (IL-7Rα) and the common γ chain [3]. Furthermore, IL-7Rα
pairs with the thymic stromal lymphopoietin receptor (TSLPR) and
forms another heterodimeric receptor for TSLP [1]. IL-7 interaction
with the IL-7Rα subunit is essential for the activation of downstream
signaling processes, such as phosphorylation- and redox-dependent
signaling pathways, that impact cellular function in diverse ways [4].
For instance, IL-7Rα activation promotes phosphorylation of tyrosine
residues on its intracellular domain, leading to the activation of
kinases, such as Janus-associated kinase 1 (JAK1) or JAK3, that trigger
additional signaling pathways involving Src, signal transducer and
activator of transcription 5a/b (STAT5a/b), NADPH oxidase (NOX), and
the phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin
complex (mTORc)/Akt signaling axis [5]. In this way, IL-7 contributes
to: (i) the development of T cells centrally in the thymus [6]; (ii) the
long-term survival and homeostasis of natural killer (NK) cells and
naïve, memory, and tumor-infiltrating T cells (TILs) in peripheral
tissues [7]; (iii) B cell development, maturation, and homeostasis [7];
(iv) the proliferation of T cells, including cytotoxic T cells, and their
infiltration into the tumor microenvironment (TME) [6]; (v) the

prevention of immune exhaustion by reducing the expression of
immune checkpoint molecules (e.g., PD-1) on TILs [8]; and (vi) the
organogenesis of vital immune organs, such as lymph nodes [9]
(Fig. 1). Due to these diverse properties, particularly its role in T-cell
proliferation and homeostasis, IL-7 is considered a promising
proinflammatory antitumor cytokine [5, 6]. However, IL-7 can be
pro-tumorigenic, as it promotes cancer cell invasiveness by enhan-
cing epithelial-mesenchymal transition [10]. Despite this duality, IL-7
is widely considered a beneficial T-cell immunomodulator [5, 6].
The antitumor efficacy of IL-7 as a native macromolecule has

been extensively evaluated in preclinical models, demonstrating
antitumor immunity [5]. Importantly, recombinant IL-7 has
undergone clinical testing alone or alongside other immunothera-
pies to stimulate the antitumor activity of T cells in refractory
cancers (NCT05075603, NCT04588038, NCT04710043) [11]. Addi-
tionally, IL-7 has been used as an ‘immune reconstitution’ agent to
replenish T cells in immune-depleted cancer patients [11, 12].
However, systemic cytokine therapy as a native macromolecule,
including high doses of IL-7, can cause adverse effects and
toxicities [11, 13]. Thus, alternative approaches are required to
harness the antitumor potential of IL-7.
Oncolytic viruses (OVs) are first-in-class immunotherapy agents

that selectively replicate in cancerous cells, sparing ‘normal’ cells and
inducing antitumor immunity (i.e., in situ vaccine effect) [14–17]. The
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effect of OV-induced anticancer vaccines can be further enhanced
by engineering viruses to express immunostimulatory cytokines
locally within the TME [18–24]. Among OVs, oncolytic herpes
simplex virus (oHSV) is the most clinically advanced and the only OV
approved by the U.S. Food and Drug Administration (FDA) for cancer
treatment [25]. Non-replicative viral vectors have also emerged as
promising tools in cancer immunotherapy [26]. Although they lack
the oncolytic potential of OVs, they offer the advantage of sustained

expression of immunostimulatory cytokines in the TME, thereby
inducing antitumor effects through non-oncolytic (i.e., non-lytic)
mechanisms [14, 26].
To safely utilize the antitumor potential of IL-7, lytic and non-lytic

viral vectors have been engineered to express IL-7 locally within the
TME [27–29]. Multiple studies have also explored the co-expression
of IL-7 with other cytokines to achieve superior antitumor
immunity. Examples include non-lytic Newcastle disease viruses
(NDV) and oncolytic adenovirus, vaccinia, and herpes simplex
viruses engineered to co-express IL-7 with IL-12 [30], IL-15 [31], B7-1
(CD86) [32], or CCL19 [33]. However, to date, no comprehensive
review has compiled evidence related to IL-7 expression in the
context of cancer immunovirotherapy. Thus, in this review, we aim
to summarize studies involving viral expression of IL-7, either alone
or in conjunction with other immunomodulators, and the
associated immune responses and mechanisms of action.

VIRAL EXPRESSION OF IL-7 AS A SINGLE CYTOKINE
Viral expression of IL-7 induces tumor regression via T-cell
activation
To date, three cytokines, IL-2, interferon alpha (IFNα), and an IL-15
receptor agonist, have been approved for cancer treatment
[34, 35]. However, systemic cytokine therapy faces significant
limitations, primarily due to poor cytokine accumulation in tumors
following systemic delivery [13]. Achieving therapeutic concentra-
tions in tumors often requires high-dose systemic cytokine
therapy, which is associated with severe adverse effects before
an optimal therapeutic concentration can be achieved [13]. To
address these challenges, Kudling et al. engineered an oncolytic
adenovirus (oAd) expressing human IL-7, designated Ad5/3-E2F-
d24-hIL7 (TILT-517), for localized delivery of IL-7 directly into
tumors [27]. Intratumoral administration of TILT-517 in an
immunocompetent subcutaneous HapT1 pancreatic cancer model
in Syrian hamsters significantly controlled tumor burden com-
pared to the Ad5/3-E2F-d24 control lacking IL-7 expression [27].
Human IL-7 expression (by the TILT-517) shows cross-reactivity

in hamsters, leading to antitumor activity by the TILT-517 in a
Syrian hamster model [27]. This was associated with significant
upregulation of T cell activation markers, such as CD25 and CD137,
within tumors, increased tumoral infiltration of CD8+ T cells and
Mac-2+ monocytes/macrophages, and elevated levels of CD4+,
CD8+ T, and MHCII+ cells in the blood (Fig. 2; Table 1). Similarly, in
patient-derived xenograft models of ovarian cancer receiving an
intraperitoneal infusion of peripheral blood mononuclear cells,
intratumoral TILT-517 resulted in significant tumor inhibition
compared to a non-IL7-expressing oAd [27].
In ex vivo patient-derived ovarian cancer samples, TILT-517

infection significantly increased the level of pro-inflammatory
cytokines while reducing anti-inflammatory cytokines, resulting in
a higher pro-inflammatory/anti-inflammatory cytokine ratio than
Ad5/3-E2F-d24 or mock. These findings suggest that the viral
expression of IL-7 creates a pro-inflammatory TME. This concept was
further validated when TILT-517-infected ovarian cancer samples
showed significantly higher levels of chemoattractant (e.g., C-X-C
motif chemokine ligand 10 (CXCL10)) compared to controls, leading
to a substantial increase in ex vivo recruitment of cytotoxic CD4+

and CD8+ T cells in TILT-517-treated samples [27] (Fig. 2; Table 1).
Overall, IL-7 expression within tumors creates a pro-

inflammatory TME, a key characteristic for successful immunother-
apy involving an immune checkpoint inhibitor (ICI) [36]. Thus,
further studies should explore the in-depth therapeutic potential
of TILT-517 in combination with ICIs.

Viral expression of IL-7 induces tumor-specific immunity and
improves the efficacy of autologous vaccine
Zhao et al. developed a non-replicative IL-7-expressing NDV by
inserting the IL-7 transgene into the genome of the LX strain, a

Fig. 1 The general properties of IL-7 cytokine. IL-7 helps in
organogenesis (e.g., lymph nodes), T-cell development centrally in
thymus, survival and homeostasis of natural killer (NK) and tumor-
infiltrating T cells (TILs), and development, maturation, and home-
ostasis of B lymphocytes. IL-7 also enhances infiltration and
proliferation of cytotoxic T cells into the tumor microenvironment
and prevents T-cell exhaustion by reducing programmed death 1
(PD-1) expression on TILs.

Fig. 2 Diverse (antitumor) effects of intratumorally injected viral
vectors expressing IL-7 or co-expressing IL-7 with IL-12 or B7.1.
An upward arrow indicates ‘enhanced.’ TME, tumor microenviron-
ment; LAG-3, lymphocyte activation gene 3; PD-1, programmed
death 1.
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non-lytic NDV. The modified virus was designated as LX/IL-7 [28].
Subsequently, they developed an LX/IL-7-based autologous tumor
vaccine by loading irradiated B16-F10 murine melanoma or EL-4
murine lymphoma cells with LX/IL-7 (i.e., B16-LX/IL-7 or EL4-LX/
IL7) and tested its antitumor efficacy, prophylactically and
therapeutically [28].
Prophylactically, subcutaneous immunization with B16-LX/IL-

7 significantly inhibited homologous B16-F10 tumor growth
compared to vaccination with irradiated B16-F10 cells loaded
with LX strain expressing a red fluorescent protein (RFP) (i.e., B16-
LX/RFP), highlighting the antitumor role of IL-7 expression. This
finding was also similarly reproduced in the EL-4 model. The co-
culture of splenocytes with B16 cell lysate demonstrated
significantly more IFN-γ-expressing CD8+, not CD4+, T cells in
the B16-LX/IL-7 group compared to controls [28]. This IFN-γ
response was tumor-specific, as splenocytes harvested from B16-
LX/IL-7-treated mice efficiently killed B16-F10 cells but not
antigenically unrelated EL-4 cells. The tumor specificity of the
B16-LX/IL-7 vaccine was further confirmed in vivo, where the B16-
LX/IL-7 vaccine controlled B16-F10 tumor growth but failed to
inhibit EL-4 lymphoma tumors [28] (Fig. 3; Table 1).
Therapeutically, the B16-LX/IL-7 vaccine significantly inhibits

homologous B16-F10 tumor growth compared to the non-IL-7-
expressing B16-LX/RFP vaccine. This was also reproduced in the
EL-4 model using the autologous EL4-LX/IL-7 vaccine. The IL-7-
expressing vaccine led to significantly increased infiltration of
both CD4+ and CD8+ T cells into tumors (vs. controls), and the
therapeutic efficacy of the B16-LX/IL-7 vaccine was CD8+ T cell-
dependent [28]. The vaccine efficacy was also tumor-specific in
the therapeutic settings since the EL4-LX/IL-7 vaccine did not work
against antigenically unrelated B16-F10 tumors (Table 1). Further-
more, the B16-LX/IL-7 vaccine induced a tumor-specific IFN-γ
response, as splenocytes or TILs from B16-LX/IL-7-treated mice
failed to produce IFN-γ when stimulated with EL-4 tumor cell
lysate [28] (Fig. 3).
In summary, an autologous tumor cell vaccine loaded with a

non-lytic NDV expressing IL-7 (i.e., LX/IL-7) provides significant
prophylactic and therapeutic benefits by activating tumor-specific
cytotoxic T-cell responses. Autologous tumor cell vaccine loaded
with NDV without IL-7 expression has shown promising results in
clinical studies [37], but the superior antitumor efficacy of
autologous vaccine loaded with IL-7-expressing NDV in preclinical
studies suggests that IL-7 expression offers substantial therapeutic
advantages. However, before this vaccine can be brought into
clinical translation, further in vivo characterization is necessary to

evaluate the kinetics of IL-7 and the potential toxicities associated
with IL-7 release. While IL-7 expression alone does not achieve
complete tumor eradication, it significantly enhances vaccine
efficacy associated with cytotoxic T cell responses [28]. This
suggests that T cell-based immunotherapies, such as ICIs, chimeric
antigen receptor T cells (CAR-T), or bi-specific T cell engagers, may
produce synergistic effects when combined with an autologous
tumor cell vaccine loaded with IL-7-expressing NDV. However, as
the LX strain of NDV is non-lytic and does not induce oncolysis for
at least 24 h post-infection [28], the release of tumor antigens and/
or IL-7 may be limited. Future studies should explore the use of a
lytic NDV strain expressing IL-7 and evaluate its efficacy in parallel
with the non-lytic NDV strain expressing IL-7, with or without
being loaded into autologous tumor cells.

Viral expression of IL-7 stimulates the proliferation of CAR-T
cells and improves antitumor efficacy
B7-H3 (CD276) is an immune checkpoint molecule overexpressed
in many cancer types, including 76% of glioblastoma (GBM)
tumors [38], the most common primary malignant brain tumor in
adults [39, 40]. B7-H3 is linked to tumor progression, therapy
resistance, and cellular invasion [41]. Huang et al. constructed
CAR-T cells targeting B7-H3 (referred to as B7H3-CAR-T) along with
an oAd-expressing human IL-7 (oAd-IL7) and evaluated their
combinatorial effect in orthotopic GBM models [29].
B7H3-CAR-T cells exposed to oAd-IL7-infected GBM cells demon-

strated significantly greater proliferation and survival compared to
B7H3-CAR-T cells exposed to control oAd-infected GBM cells [29].
This study underscores the beneficial role of IL-7 in enhancing T-cell
survival and expansion. In vivo, in an orthotopic GBM xenograft
model, the combination of oAd-IL7 and B7H3-CAR-T resulted in a
significant proportion of long-term survivors (i.e., 80%), while the
monotherapy using either oAd-IL7 or B7H3-CAR-T alone did not
yield any survivors. The enhanced efficacy of the combinatorial
therapy was associated with (i) increased tumoral infiltration of
B7H3-CAR-T cells and (ii) significantly higher levels of Ki67 (a marker
for proliferating cells) in the infiltrated B7H3-CAR-T cells. These
effects were also accompanied by increased expression of T-cell
exhaustion markers, such as LAG-3 and PD-1 [29] (Fig. 2; Table 1).
In summary, the IL-7 expression enhances the survival and

expansion of CAR-T cells, resulting in promising antitumor efficacy
and long-term survival. This combination strategy primarily targets
B7-H3-expressing GBMs [38] but can also be applied to other B7-
H3-expressing tumors, ensuring broader applicability. The safety
of this compelling combination therapy needs to be assessed
before clinical translation.

VIRAL CO-EXPRESSION OF IL-7 WITH IL-12
While the expression of single cytokines has provided important
data on their contribution to therapeutic antitumor responses, in
general, the narrow therapeutic window for many cytokines has
precluded meaningful efficacy against cancers [20, 23, 42–46].
Similarly, the viral expression of IL-7 alone does not consistently
eradicate cancers or achieve durable efficacy [27–29]. One strategy
to improve efficacy is to consider the expression of more than one
immunomodulator [14, 21, 22, 47, 48]. To enhance the antitumor
immunity of localized IL-7 expression, several viruses have been
engineered to co-express IL-7 alongside other immunostimulatory
cytokines [30–33]. This section and the following sections will
summarize studies involving viruses that co-express IL-7 with
another cytokine, highlighting their antitumor potential and
mechanisms of action.

Viral co-expression of IL-7 plus IL-12 induces cytotoxic T cell-
driven antitumor immunity
IL-12 activates dendritic cells (DCs) [49], stimulates macrophages
and NK cells [18, 49], promotes T cell proliferation, and skews CD8+

Fig. 3 The prophylactic and therapeutic effects of irradiated
autologous tumor cell vaccine loaded with viral vectors expres-
sing IL-7 (left panel) or co-expressing IL-7 plus IL-15 (right panel).
The upward and downward arrows indicate ‘enhanced’ and
‘reduced’ functions, respectively, of irradiated cancer cells loaded
with viral vectors.
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T cells toward a cytotoxic phenotype [50, 51]. These diverse
immunostimulatory properties make it a master proinflammatory
cytokine, which has been tested clinically to treat cancer [52–55].
However, systemic IL-12 therapy causes severe toxicities, necessi-
tating localized expression within the TME [56, 57]. Clinical studies
with controlled release of IL-12 within the TME are ongoing [58].
Nakao et al. generated an oncolytic vaccinia virus co-expressing

human IL-7 plus murine IL-12 (hIL7/mIL12-VV) and compared its
efficacy with single cytokine-expressing (hIL7-VV, mIL12-VV) or
non-cytokine-expressing (cont-VV) viruses in murine models [30].
Since human IL-7 is biologically active in mice [59], but human IL-
12 is not [60], the study used murine IL-12. In the LLC lung
carcinoma model, intratumoral injections of hIL7-VV had no
significant antitumor effects, while IL-12 expression (mIL12-VV)
inhibited tumor growth, achieving a complete response in 1/7
(14.3%) animals. The combinatorial use of hIL7-VV plus mIL12-VV
further improved outcomes, with a 57.1% (4/7) complete response
rate [30] (Fig. 2; Table 1). This enhanced efficacy correlated with
increased intratumoral infiltration of CD4+ and CD8+ T, NK, and
natural killer T (NKT) cells, with a significant effect observed on
CD4+ T and NKT cells. Increased IFN-γ production in TME likely
contributed to this effect (Fig. 2). Importantly, mice receiving the
combinatorial treatment experienced no weight loss, suggesting
that viral co-expression of dual cytokines within the tumor is well
tolerated [30].
In the B16-F10 melanoma model, viral co-expression of IL-7 plus

IL-12 (hIL7/mIL12-VV), instead of using two separate viruses (hIL7-
VV plus mIL12-VV), resulted in a complete response in 75% (6/8)
animals compared to 25% (2/8) in the cont-VV control group [30].
Dual cytokine expression by hIL7/mIL12-VV was also efficacious
against poorly immunogenic TRAMP-C2 prostate tumors and
advanced-stage (>160mm3) CT26.WT tumors [30]. The antitumor
activity of hIL7/mIL12-VV in the CT26.WT model was completely
abrogated in the absence of CD8+ (not CD4+) T cells, suggesting a
CD8+ T-cell-dependent mechanism [30]. However, due to the lack
of relevant control viruses (i.e., hIL7-VV or mIL12-VV), it was
unclear whether the observed efficacy was driven by the
expression of one or both cytokines.
The antitumor role of the viral expression of IL-7 and/or IL-12

was further supported by another study [61]. For example,
intratumoral injections of sindbis virus (SINV) expressing IL-7 or
IL-12 (SINV-IL7 or SINV-IL12) in a subcutaneous U-87MG GBM
model demonstrated superior efficacy compared to control SINV.
A SINV co-expressing IL-7 plus IL-12 (SINV-IL7/IL12) further
enhanced tumor suppression compared to SINV-IL7 or SINV-IL12,
with SINV-IL7/IL12 achieved 80% long-term survivors in an
intracranial U-87MG GBM model (Table 1). However, this study
did not define the antitumor immune mechanisms of IL-7 and/or
IL-12 expression [61].

Viral co-expression of IL-7 plus IL-12 induces abscopal tumor-
specific immunity and immunologic memory
A key aspect of successful immunovirotherapy is assessing
whether virus-induced immunostimulation generates systemic
antitumor immunity (i.e., abscopal response) [62]. The dual
cytokine-expressing hIL7/mIL12-VV effectively controlled distant
tumor growth in bilateral CT26.WT and LLC models [30]. In the
CT26.WT model, intratumoral injection of hIL7/mIL12-VV into one
tumor resulted in 100% (6/6) eradication of injected tumors and
50% (3/6) of non-injected contralateral tumors, whereas cont-VV
failed in both (Table 1). The inhibition of distant tumor growth by
hIL7/mIL12-VV suggests its potential to manage metastatic
diseases [30]. Although hIL7/mIL12-VV controlled non-injected
tumors, viral DNA was detected only in injected tumors [30],
indicating virus-induced systemic immunity rather than a direct
oncolytic effect [62]. This correlated with enhanced MHC-II
expression on antitumoral M1-like macrophages in non-injected
tumors and spleens and elevated CD11b+ DCs in spleens [30]

(Fig. 2). This suggests that hIL7/mIL12-VV treatment facilitated
robust antigen presentation in distant lymphoid organs (e.g.,
spleens), critical for antitumor immunity [14].
Consistently, compared to cont-VV, hIL7/mIL12-VV significantly

increased intratumoral infiltration of conventional T (CD4+FoxP3-),
CD8+ T, NKT, NK, and regulatory T cells (CD4+FoxP3+) in both
injected and distant tumors. Interferon gamma (IFN-γ) levels were
significantly elevated following hIL7/mIL12-VV treatment, likely
contributing to increased PD-L1 expression [45, 63] in both injected
and non-injected CT26.WT tumors [30]. Furthermore, hIL7/mIL12-VV
generated gp70 tumor antigen-specific (gp70+CD8+) T cells in both
injected and distant CT26.WT tumors (Fig. 2; Table 1), reinforcing its
systemic antitumor immune effect [30].
In the bilateral LLC model, hIL7/mIL12-VV reduced tumor

growth by 43.1% in both injected and non-injected tumors [30].
Antitumor effects in non-injected tumors indicate virus-induced
abscopal immunity [62]. Unlike CT26.WT model, viral DNA was
present in both tumors. Mice cured of CT26.WT tumors rejected
tumor rechallenge and remained tumor-free, suggesting the
development of immune memory (Table 1). This immune memory
was tumor-specific, as IFN-γ secretion (by splenocytes harvested
from mice cured of CT26.WT tumors) was significantly higher
against CT26.WT cells than antigenically unrelated cancer cells [30]
(Fig. 2).

Viral co-expression of IL-7 plus IL-12 increases CD8+ T cell
clonal diversity
The antitumor efficacy of hIL7/mIL12-VV was also evaluated in
humanized tumor models. To achieve this, a new vaccinia virus co-
expressing human IL-7 and human IL-12 (hIL7/hIL12-VV) was
engineered, and its efficacy was assessed in immunocompromised
mice bearing human HCT 116 colon tumors, U87 glioblastoma, or
Detroit 562 head and neck tumors [30]. In all three models, hIL7/
hIL12-VV led to significant tumor regression compared to mock
treatment. Similarly, in humanized mice bearing subcutaneous
NCI-H1373 tumors, hIL7/hIL12-VV was significantly more effective
than cont-VV in reducing tumor burden. The superior efficacy of
hIL7/hIL12-VV was associated with enhanced intratumoral infiltra-
tion of CD4+, CD8+ T, NKT, and NK cells compared to cont-VV or
PBS [30] (Fig. 2; Table 1).
In a follow-up study, mechanisms of the hIL7/hIL12-VV virus

were investigated and compared with corresponding controls,
specifically involving viruses with or without IL-7 or IL-12
expression [64]. Interestingly, IL-7 expression alone did not
promote the clonality of tumor-infiltrating CD8+ T cells. In contrast,
IL-12 expression significantly enhanced CD8+ T cell clonality
compared to IL-7 expression alone. The viral expression of IL-7
plus IL-12 within tumors increased the clonal diversity of CD8+

T cells compared to IL-7 expression; however, this combinatorial
effect was not statistically different from IL-12 expression [64]. In
another study, the same group demonstrated that viral co-
expression of IL-7 and IL-12 by hIL7/mIL12-VV, compared to cont-
VV treatment, significantly enhanced the percentage of ICOS+PD-
1-CD8+ effector T cells within tumors in both CT26.WT and LLC
models [65] (Fig. 2). Since inducible costimulatory (ICOS) is a
marker for CD4+ helper T cells contributing to humoral immunity
[66], this suggests that hIL7/mIL12-VV elicits humoral immunity in
this context.

Viral co-expression of IL-7 plus IL-12 synergizes with ICIs
Virotherapy can be combined with systemic treatment to achieve
better therapeutic outcomes [67]. In the bilateral CT26.WT model,
the antitumor efficacy of hIL7/mIL12-VV was evaluated in
combination with anti-PD-1 or anti-CTLA-4. Virotherapy (i.e.,
hIL7/mIL12-VV) alone eradicated only 10% of non-injected
contralateral tumors (which mimic metastasis), while neither
anti-PD-1 nor anti-CTLA-4 monotherapy showed efficacy. Impor-
tantly, combining hIL7/mIL12-VV with anti-PD-1 or anti-CTLA-4

M. Hudson et al.

1172

Cancer Gene Therapy (2025) 32:1166 – 1176



eradicated 60% and 40% of non-injected contralateral tumors,
respectively, showing the combinatorial effect [30] (Fig. 2; Table 1).
Overall, although IL-7 expression alone was not significantly

beneficial in the models discussed above, it did appear to enhance
the immune response elicited by IL-12 expression, as demon-
strated in the LLC model. The above studies indicate that the viral
co-expression of IL-7 and IL-12 within tumors effectively modifies
the immune status of the TME both locally and systemically,
enabling previously non-responsive tumors (such as CT26.WT and
LLC) to become responsive to ICI without compromising safety
[30]. Further, the local induction of IFN-γ may drive PD-L1
expression, which can also sensitize tumors to ICI [45]. Thus, the
use of oncolytic cytokine-encoded viruses represents an increas-
ingly popular strategy for combination immunovirotherapy,
exploiting cytokine-expressing viruses to convert tumors from
an immunologically ‘cold’ state to an immunologically ‘hot’ one,
thereby sensitizing them to ICI [45, 67, 68].
The viral co-expression of IL-7 and IL-12 in one tumor alters the

immune status of non-injected tumors and significantly regresses
non-injected tumors [30], suggesting a strong induction of whole-
body antitumor immunity, essential for targeting metastatic
diseases [69]. Importantly, all cured mice treated with the dual
cytokine-expressing vaccinia virus developed long-term immune
memory responses, crucial for preventing recurrence [70]. Like-
wise, a combinatorial study using tumor matrix (collagen)-binding
IL-7 and IL-12 showed synergistic antitumor effects associated
with the induction of immunologic memory [71]. However, a
limitation of most of the studies discussed in this section was the
lack of single cytokine-encoding viruses as controls, making it
challenging to delineate the specific role of each cytokine.
Nevertheless, the strong antitumor effects observed with the
virus co-expressing IL-7 and IL-12 underscore its clinical translat-
ability once the antitumor role of each individual cytokine (IL-7 or
IL-12) is defined preclinically.

VIRAL CO-EXPRESSION OF IL-7 WITH IL-15
IL-7, a member of the common γ-chain cytokine family, maintains
memory CD8+ T cell responses [6, 7, 72]. Like IL-7, IL-15 is another
γ-chain cytokine maintaining memory CD8+ T cell responses [73].
Additionally, like IL-7, IL-15 promotes proliferation and activation
of T and NK cells [74]. Because both IL-7 and IL-15 produce similar
immunostimulatory effects on the host immune cells, especially
T cells [75], it is believed that their co-expression by a virus can
lead to superior antitumor immunity compared to single cytokine
expression.

Viral co-expression of IL-7 plus IL-15 induces tumor-specific
prophylactic antitumor immunity
As described above, irradiated B16-F10 cells loaded with non-lytic
NDV LX strain expressing IL-7 (i.e., B16-LX/IL-7) were utilized as an
autologous tumor cell vaccine [28]. Xu et al. further modified the
LX strain to co-express IL-7 and IL-15, separated by a 2A peptide
derived from the foot-and-mouth disease virus, creating LX/
IL(15 + 7) [31]. As an improvement on the B16-LX/IL-7 vaccine [28],
irradiated B16-F10 cells (treated with 200 Gy of radiation) were
loaded with LX/IL(15 + 7), here referred to as the B16-LX/IL(15 + 7)
vaccine [31].
Subcutaneous prophylactic immunization of C57BL/6 mice with

LX/IL(15 + 7)-modified B16-F10 cells (B16-LX/IL(15 + 7)) or LX/RFP-
modified B16-F10 cells (i.e., B16-LX/RFP) significantly inhibited
B16-F10 tumor growth compared to immunization with irradiated
B16-F10 cells without virus loading. Importantly, the B16-LX/
IL(15 + 7) vaccine demonstrated a significantly superior prophy-
lactic antitumor effect than the control B16-LX/RFP vaccine [31],
indicating the antitumor role of dual cytokine expression. Both
B16-LX/IL(15 + 7) and B16-LX/RFP vaccines similarly enhanced
infiltration of CD4+ and CD8+ T cells into the TME compared to

control irradiated B16-F10 cells. The antitumor response of the
B16-LX/IL(15 + 7) vaccine was tumor-specific, as it did not inhibit
the growth of antigenically distinct EL-4 lymphomas [31] (Fig. 3;
Table 1).

Viral co-expression of IL-7 plus IL-15 induces tumor-specific
and CD8-dependent therapeutic immunity
Like the prophylactic efficacy, the therapeutic B16-LX/IL(15 + 7)
vaccine significantly inhibited B16-F10 tumor growth compared to
the B16-LX/RFP vaccine, demonstrating the antitumor role of dual
cytokines. The antitumor effect of the B16-LX/IL(15 + 7) vaccine
was tumor-specific, as the EL4-LX/IL(15 + 7) vaccine (i.e., irradiated
EL-4 tumor cells loaded with LX/IL(15 + 7)) did not inhibit
antigenically unrelated B16-F10 tumor growth [31]. Mechanisti-
cally, although the B16-LX/IL(15 + 7) vaccine significantly
increased intratumoral infiltration of CD3+, CD4+, and CD8+

T cells (vs. B16-LX/RFP), its efficacy was abrogated in the absence
of CD8+ T cells, indicating CD8-dependent efficacy (Fig. 3; Table 1).
However, no distinct contributions of IL-7 and IL-15 expression
were clearly defined in this study due to the lack of appropriate
controls, such as irradiated B16-F10 cells loaded with LX/IL-7 or
LX/IL-15 [31]. Thus, future research is necessary to clarify this issue.

VIRAL CO-EXPRESSION OF IL-7 PLUS B7.1
B7.1 (CD80) is a glycoprotein receptor recognized as a DC
maturation marker [76]. CD80 binds to the CD28 co-stimulatory
receptor, activating T cells, or to the CTLA-4 co-inhibitory receptor,
downregulating T cell activity [77]. Since IL-7 is involved in T cell
activation and maintenance [6, 7, 72] while the CD80-CD28
interaction contributes to T cell activation [77], the viral co-
expression of IL-7 and CD80 will likely induce superior antitumor T
cell activity. In this context, a replication-defective adenovirus co-
expressing IL-7 and B7.1 (Ad.IL-7/B7.1) was developed, and its
efficacy was evaluated against transplanted and chemically
induced non-transplanted tumors [32], as outlined below.

Viral co-expression of IL-7 plus B7.1 produces T cell-
dependent efficacy against transplanted tumors
Intratumoral injection of a control adenovirus expressing beta-
galactosidase (Ad.βgal) inhibited the growth of subcutaneous TS/
A adenocarcinoma in BALB/c mice compared to PBS injection.
Tumor growth inhibition was more pronounced with intratumoral
Ad.IL-7/B7.1 treatment compared to Ad.βgal, leading to 70% (7/
10) tumor-free long-term survivors in the Ad.IL-7/B7.1 group, but
there were no survivors in the Ad.βgal group (Table 1). This result
highlights the antitumor role of IL-7 plus B7.1. However, Ad.IL-7/
B7.1 did not show efficacy against established TS/A tumors in
BALB/c nu/nu mice which lack T cells, indicating the efficacy of
Ad.IL-7/B7.1 is T cell-dependent [32].
Meanwhile, intratumoral Ad.IL-7/B7.1 treatment enhanced the

infiltration of CD4+ and CD8+ T cells into tumors compared to the
control. However, it was unclear which T cell subtype (CD4+ or CD8+

T cells) was primarily responsible for the antitumor efficacy against
transplanted tumors. 100% of the tumor-free mice due to Ad.IL-7/
B7.1 treatment rejected TS/A tumor rechallenge [32], likely due to
the treatment-induced immunological memory (Fig. 2; Table 1).

Viral co-expression of IL-7 plus B7.1 does not show efficacy
against non-transplanted tumors
Although Ad.IL-7/B7.1 was effective against transplanted sub-
cutaneous TS/A adenocarcinoma, intratumoral co-expression of IL-
7 plus B7.1 did not show efficacy against 3-methylcholanthrene
(3MC)-induced non-transplanted tumors. These non-transplanted
tumors were generated by intramuscular injection of the 3MC
carcinogen, which typically causes fibrosarcoma-like tumors, or by
subcutaneous injection, which generates papilloma-like tumors.
The lack of efficacy in this model was likely due to the absence of
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significant tumor immune infiltrates (CD4+ and CD8+ T cells) in the
Ad.IL-7/B7.1 treatment group compared to the control group [32]
(Fig. 2).
Interestingly, in a transplanted fibrosarcoma model derived

from 3MC-induced MC51-9 fibrosarcoma cells, intratumoral Ad.IL-
7/B7.1 was efficacious, leading to 87.5% (7/8) tumor-free long-
term survivors [32] (Fig. 2). The reason for the contrasting efficacy
of Ad.IL-7/B7.1 between the two models, i.e., no efficacy against
non-transplanted tumors (generated by intramuscular or sub-
cutaneous 3MC injection) versus 87.5% efficacy against trans-
planted tumors (derived from 3MC-treated MC51-9 fibrosarcoma
cells), remains unclear. The authors concluded that the lack of
efficacy against non-transplanted tumors was not due to the type
or location of the tumor or limited adenoviral gene (IL-7/B7.1)
transduction efficiency [32]. Unfortunately, no further studies were
reported to understand these differences.

VIRAL CO-EXPRESSION OF IL-7 AND CCL19
While considerable investigations of OVs armed with anticancer
cytokines with or without ICIs have been reported [18, 21, 22],
another strategy is to encode chemokines that can help attract
target immune cells to the tumor site. Indeed, the FDA-approved
talimogene laherparepvec (T-VEC) encodes granulocyte-
macrophage colony-stimulating factor (GM-CSF), which was
designed, in part, to attract local DCs to initiate tumor-
associated antigen presentation [25]. Like IL-7, GM-CSF helps in
T cell recruitment to the tumors [78]. CCL19, a cytokine that binds
to CCR7 (a chemokine receptor), plays a vital role in T cell
trafficking [79]. Therefore, CCL19 expression is expected to work
synergistically with IL-7 or GM-CSF expression. The positive effects
of cytokine expression and immune cell infiltration into tumors
may be counterbalanced by the expression of immune check-
points, such as PD-1 [80]. Consistent with this notion, viral
expression of an antibody against PD-1 can reverse PD-1-related T
cell exhaustion [81].
A type 2 oHSV was generated to co-express IL-7 and CCL19

(oHSV2-IL7×CCL19) and was then tested with additional type 2
oHSV vectors expressing GM-CSF (oHSV2-GMCSF), IL-12 (oHSV2-
IL12), anti-PD-1 (oHSV2-PD1v), and IL-15 (oHSV2-IL15) [82]. The
five oHSV constructs demonstrated superior antitumor efficacy,
resulting in 100% long-term survivors in two murine tumor
models (CT26 and 4T1). The oHSV2-IL7×CCL19 (or oHSV2-GMCSF)
treatment showed better efficacy (but statistically insignificant)
than the other three viruses (oHSV2-IL12, oHSV2-PD1v, or oHSV2-
IL15) in the CT26 model (Table 1) [82]. The specific contribution of
IL-7 to the antitumor efficacy, induced either by oHSV2-IL7×CCL19
or a cocktail of five oHSV2s, remains unclear. Further research,
including testing the antitumor efficacy of the combination (i.e.,
oHSV2-IL7×CCL19) versus controls (e.g., oHSV2-IL7, oHSV2-CCL19,
oHSV2-IL12, oHSV2-PD1v, or oHSV2-IL15), is needed to define the
antitumor role of IL-7 (or other cytokines) expression.

CONCLUSIONS
IL-7 has immunomodulatory properties that can facilitate T cell
activation and promote cancer immunotherapy. A major obstacle
in driving therapeutic responses by systemic IL-7 cytokine therapy
is the narrow therapeutic window exhibited by IL-7. Here, we
describe the use of oncolytic and non-oncolytic virus vectors as
novel strategies for locally delivering high doses of IL-7 with less
systemic toxicity. Various viruses engineered to express IL-7 have
now been tested in several preclinical cancer models [27–29],
demonstrating superior antitumor immunity via activation of TILs
—a hallmark of “immunologically hot” tumors [67]—compared to
non-IL7-expressing viruses. The local expression of IL-7 alone, and
in combination with other cytokines and chemokines, remodels
the TME and enables tumor susceptibility to immunotherapy

[29, 67]. In some cases where viral expression of a single cytokine
is insufficient to eradicate tumors [27], combination approaches
were able to mediate tumor eradication, long-term survival, and
the development of tumor-specific immunological memory [45].
Furthermore, viral expression of IL-7 alone, and especially with
other cytokines, within tumors improves the antitumor efficacy of
CAR-T cell immunotherapy [29], autologous tumor cell vaccines
[28], and ICI treatment [30].
While there is strong preclinical evidence that multiple cytokine

vectors (e.g., IL-7 plus IL-12, IL-7 plus IL-15, IL-7 plus B7.1, or IL-7
plus CCL19) have superior therapeutic activity in vivo, the absence
of appropriate controls in those preclinical reports has been a
limitation in understanding the contribution of individual
cytokines. Nonetheless, there is intriguing data suggesting that
certain IL-7 combinations may be especially interesting. For
example, given that IL-12 is a key pro-inflammatory cytokine that
promotes T cell proliferation and cytotoxicity [50, 51], while IL-7
supports T cell proliferation, maintenance, and survival [6, 7, 72],
the viral co-expression of IL-7 and IL-12 may represent a promising
strategy for dual cytokine-expressing viruses in cancer immu-
notherapy. Recent studies involving an oncolytic vaccinia virus co-
expressing IL-7 and IL-12 demonstrated potent antitumor efficacy
across melanoma, colon, and lung cancer models [30].
While IL-12 appears to be promising for viral co-expression with

IL-7, another cytokine that has not been as well evaluated is IL-2.
Like IL-12, IL-2 is another potent proinflammatory cytokine that can
also be expressed by viruses [20]. IL-7 synergizes with IL-2, creating
an immune-active TME and sensitizing tumors to ICIs [83]. This
combination (i.e., IL-7 plus IL-2) could be expressed using replicative
oHSVs to induce immune responses with oncolysis [84] or non-
replicative oHSVs for sustained cytokine expression and antitumor
immunity via a non-lytic mechanism [26]. Tumor models are
important, so testing constructs in “immunologically cold” cancer
types (e.g., GBM) that are minimally responsive or not responsive to
ICIs [85] can be informative. Additionally, it would be worthwhile to
virally co-express IL-7 in conjunction with T cell co-stimulatory
ligands, such as 4-1BBL [86], OX40L [87], ICOSL [66, 88], or similar
ligands [89], which are known to generate potent antitumor
immunity. Several oncolytic viruses that have been approved or are
under clinical development for cancer treatment express cytokines,
including GM-CSF, IFNα, and IL-15 receptor agonists. Further studies
of virally encoded IL-7 expression alone and in combination merit
further investigation as a strategy for realizing the potential
therapeutic value of IL-7 for cancer treatment.
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