Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel GM-CSF-encoding oncolytic adenovirus induces profound autophagy and promotes viral replication to enhance anti-tumor efficacy

Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) acts as a double-edged sword in cancer by enhancing both anti- and pro-tumorigenic immune cells. In this study, two oncolytic adenoviruses were engineered to modulate GM-CSF expression using different strategies: one with the CMV promoter (oAd-CMV-GM-CSF) and the other using the endogenous viral E3 promoter (oAd-GM-CSF). The impacts of these modifications on transgene expression, cytotoxicity, viral replication, and apoptosis were assessed both in vitro and in vivo. The results demonstrated that oAd-CMV-GM-CSF produced significantly lower GM-CSF levels than oAd-GM-CSF, interestingly oAd-CMV-GM-CSF exhibited increased cytotoxicity and apoptosis compared to oAd-GM-CSF and control groups. The further study showed oAd-CMV-GM-CSF induced profound autophagy through the activation of the Janus kinase 2/Signal Transducer and Activator of Transcription 2 (JAK2/STAT2) signaling pathway. The use of autophagy and JAK-2 inhibitors, Chloroquine (CQ) and AG-490, respectively, significantly mitigated the apoptosis induced by oAd-CMV-GM-CSF. In addition, oAd-CMV-GM-CSF presented a faster viral replication and production of more active progeny virus than oAd-GM-CSF, which could be inhibited by CQ. oAd-CMV-GM-CSF augments propagation of the progeny viruses and induces immunogenic cell death(ICD) in A549 and PANC-1 cells. In vivo oAd-CMV-GM-CSF had stronger anti-tumor effect than oAd-GM-CSF in immunodeficient model and immune-competent model. Our findings indicate that oAd-CMV-GM-CSF induces more profound autophagy and promoting viral replication to enhance the anti-tumor efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The construction and transgene expression of two-armed oncolytic adenoviruses encoding GM-CSF.
Fig. 2: Effects of transgene insertion on cytotoxicity and apoptosis in a variety of cancer cell lines.
Fig. 3: The oAd-CMV-GM-CSF induced stronger autophagy.
Fig. 4: oAd-CMV-GM-CSF induces more profound autophagy through JAK2/STAT signaling pathway in cancer cell.
Fig. 5: oAd-CMV-GM-CSF promotes replication of oAd in cancer cell.
Fig. 6: oAd-CMV-GM-CSF augments propagation of the progeny viruses and induces ICD in A549 and PANC-1 cells.
Fig. 7: The oAd-CMV-GM-CSF has stronger anti-tumor effects in immunocompromised BALB/c-nu mice.
Fig. 8: The oAd-CMV-GM-CSF has stronger anti-tumor effects in immunocompetent Syrian hamster.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are included within the article or are available from the corresponding authors upon reasonable request. Further inquiries can be directed to the corresponding author, Fei Li, via email.

References

  1. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 2022;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther. 2023;8:156.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shalhout SZ, Miller DM, Emerick KS, Kaufman HL. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 2023;20:160–77.

    Article  PubMed  Google Scholar 

  4. Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer. 2018;18:419–32.

    Article  CAS  PubMed  Google Scholar 

  5. Mamola JA, Chen CY, Currier MA, Cassady K, Lee DA, Cripe TP. Opportunities and challenges of combining adoptive cellular therapy with oncolytic virotherapy. Mol Ther Oncol. 2023;29:118–24.

    Article  CAS  Google Scholar 

  6. Oronsky B, Gastman B, Conley AP, Reid C, Caroen S, Reid T. Oncolytic adenoviruses: the cold war against cancer finally turns hot. Cancers. 2022;14:4701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell SJ, Bell JC, Engeland CE, McFadden G. Advances in oncolytic virotherapy. Commun Med. 2022;2:33.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gryciuk A, Rogalska M, Baran J, Kuryk L, Staniszewska M. Oncolytic adenoviruses armed with co-stimulatory molecules for cancer treatment. Cancers. 2023;15:1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, et al. Oncolytic adenovirus: prospects for cancer immunotherapy. Front Microbiol. 2021;12:707290.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chesney JA, Ribas A, Long GV, Kirkwood JM, Dummer R, Puzanov I, et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J Clin Oncol. 2023;41:528–40.

    Article  CAS  PubMed  Google Scholar 

  11. Khushalani NI, Harrington KJ, Melcher A, Bommareddy PK, Zamarin D. Breaking the barriers in cancer care: the next generation of herpes simplex virus-based oncolytic immunotherapies for cancer treatment. Mol Ther Oncol. 2023;31:100729.

    Article  Google Scholar 

  12. de Graaf JF, de Vor L, Fouchier RAM, van den Hoogen BG. Armed oncolytic viruses: a kick-start for anti-tumor immunity. Cytokine growth factor Rev. 2018;41:28–39.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Huang J, Tang J, Hu S, Luo S, Luo Z, et al. Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase I/II clinical trial. J Immunother Cancer. 2021;9:e002224.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384:1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.

    Article  CAS  PubMed  Google Scholar 

  16. Toulmonde M, Cousin S, Kind M, Guegan JP, Bessede A, Le Loarer F, et al. Randomized phase 2 trial of intravenous oncolytic virus JX-594 combined with low-dose cyclophosphamide in patients with advanced soft-tissue sarcoma. J Hematol Oncol. 2022;15:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rangsitratkul C, Lawson C, Bernier-Godon F, Niavarani SR, Boudaud M, Rouleau S, et al. Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Mol Ther Oncol. 2022;24:507–21.

    Article  CAS  Google Scholar 

  18. Hadaschik BA, Zhang K, So AI, Fazli L, Jia W, Bell JC, et al. Oncolytic vesicular stomatitis viruses are potent agents for intravesical treatment of high-risk bladder cancer. Cancer Res. 2008;68:4506–10.

    Article  CAS  PubMed  Google Scholar 

  19. Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, et al. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Human Gene Ther. 2013;24:644–54.

    Article  CAS  Google Scholar 

  20. Kemp V, van den Wollenberg DJM, Camps MGM, van Hall T, Kinderman P, Pronk-van Montfoort N, et al. Arming oncolytic reovirus with GM-CSF gene to enhance immunity. Cancer Gene Ther. 2019;26:268–81.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: a double-edged sword in cancer immunotherapy. Front Immunol. 2022;13:901277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrera-Sal M, de Sostoa J, Nunez-Manchon E, Moreno R, Fillat C, Bazan-Peregrino M, et al. Arming oncolytic adenoviruses: effect of insertion site and splice acceptor on transgene expression and viral fitness. Int J Mol Sci. 2020;21:5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farrera-Sal M, Fillat C, Alemany R. Effect of transgene location, transcriptional control elements and transgene features in armed oncolytic adenoviruses. Cancers. 2020;12:1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu M, Bristol JA, Xie Y, Mina M, Ji H, Forry-Schaudies S, et al. Linked tumor-selective virus replication and transgene expression from E3-containing oncolytic adenoviruses. Journal Virol. 2005;79:5455–65.

    Article  CAS  Google Scholar 

  25. Mantwill K, Klein FG, Wang D, Hindupur SV, Ehrenfeld M, Holm PS, et al. Concepts in oncolytic adenovirus therapy. Int J Mol Sci. 2021;22:10522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, et al. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer. 2014;135:720–30.

    Article  CAS  PubMed  Google Scholar 

  27. Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther J Am Soc Gene Ther. 2010;18:1874–84.

    Article  CAS  Google Scholar 

  28. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor-armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12:305–13.

    Article  CAS  PubMed  Google Scholar 

  29. Wei F, Wang H, Zhang J, Chen X, Li C, Huang Q. Pharmacokinetics of combined gene therapy expressing constitutive human GM-CSF and hyperthermia-regulated human IL-12. J Exp Clin Cancer Res. 2013;32:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA, et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Ther. 2001;8:1123–31.

    Article  CAS  PubMed  Google Scholar 

  31. McSharry BP, Burgert HG, Owen DP, Stanton RJ, Prod’homme V, Sester M, et al. Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. J Virol. 2008;82:4585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol. 2003;21:1328–35.

    Article  CAS  PubMed  Google Scholar 

  33. Li F, Yuan Y, Dai Y, Cheng T, Cao H, Yan D, et al. M11: a tropism-modified oncolytic adenovirus arming with a tumor-homing peptide for advanced ovarian cancer therapies. Hum Gene Ther. 2022;33:262–74.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J, Gao Q, Chen G, Huang X, Lu Y, Li K, et al. Novel oncolytic adenovirus selectively targets tumor-associated polo-like kinase 1 and tumor cell viability. Clin Cancer Res. 2005;11:8431–40.

    Article  CAS  PubMed  Google Scholar 

  35. Yan D, Li G, Yuan Y, Li H, Cao H, Dai Y et al. SOCS3 inhibiting JAK-STAT pathway enhances oncolytic adenovirus efficacy by potentiating viral replication and T-cell activation. Cancer Gene Ther. 2023;31;397–409.

  36. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007;2:1236–47.

    Article  CAS  PubMed  Google Scholar 

  37. Dai Y, Zhao XJ, Li F, Yuan Y, Yan DM, Cao H, et al. Truncated bid regulates cisplatin response via activation of mitochondrial apoptosis pathway in ovarian cancer. Human Gene Ther. 2020;31:325–38.

    Article  CAS  Google Scholar 

  38. Dai Z, Si Y, Xiong S, Li Y, Ye J, Gao Q, et al. Chimeric Ad5/35 oncolytic adenovirus overcome preexisting neutralizing antibodies and enhance tumor targeting efficiency. Cancer Gene Ther. 2025;32:418–36.

    Article  CAS  PubMed  Google Scholar 

  39. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  41. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Morgan MJ, Chen K, Choksi S, Liu ZG. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood. 2012;119:2895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang M, Liu F, Zhou P, Wang Q, Xu C, Li Y, et al. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15:1150–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao D, Wen X, Liu L, Wang L, Zhou X, Li Y, et al. Sanshool improves UVB-induced skin photodamage by targeting JAK2/STAT3-dependent autophagy. Cell Death Dis. 2019;10:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang YH, Yang PM, Chuah QY, Lee YJ, Hsieh YF, Peng CW, et al. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy. 2014;10:1212–28.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meng C, Zhou Z, Jiang K, Yu S, Jia L, Wu Y, et al. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol. 2012;157:1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol. 2023;13:1142172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res. 2010;70:4297–309.

    Article  CAS  PubMed  Google Scholar 

  49. Cohen AM, Hines DK, Korach ES, Ratzkin BJ. In vivo activation of neutrophil function in hamsters by recombinant human granulocyte colony-stimulating factor. Infection Immun. 1988;56:2861–5.

    Article  CAS  Google Scholar 

  50. Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H, et al. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther. 2006;13:1010–20.

    Article  CAS  PubMed  Google Scholar 

  51. Robinson M, Ge Y, Ko D, Yendluri S, Laflamme G, Hawkins L, et al. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression. Cancer Gene Ther. 2008;15:9–17.

    Article  CAS  PubMed  Google Scholar 

  52. Jiffry J, Thavornwatanayong T, Rao D, Fogel EJ, Saytoo D, Nahata R, et al. Oncolytic reovirus (pelareorep) induces autophagy in Kras-mutated colorectal cancer. Clinical Cancer Res. 2021;27:865–76.

    Article  CAS  Google Scholar 

  53. Jiang H, White EJ, Rios-Vicil CI, Xu J, Gomez-Manzano C, Fueyo J. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J Virol. 2011;85:4720–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol. 2018;16:341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li W, You G, Haiyilati A, Wang H, Jiao H, Wang Y, et al. Critical role of viral protein hexon in hypervirulent fowl adenovirus serotype-4-induced autophagy by interaction with BAG3 and promotion of viral replication in LMH cells. J Virol. 2023;97:e0028423.

    Article  PubMed  Google Scholar 

  56. Rodriguez-Rocha H, Gomez-Gutierrez JG, Garcia-Garcia A, Rao XM, Chen L, McMasters KM, et al. Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology. 2011;416:9–15.

    Article  CAS  PubMed  Google Scholar 

  57. Phillips LM, Li S, Gumin J, Daou M, Ledbetter D, Yang J, et al. An immune-competent, replication-permissive Syrian Hamster glioma model for evaluating Delta-24-RGD oncolytic adenovirus. Neuro Oncol. 2021;23:1911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K, et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res. 2006;66:1270–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (82272628, 22104040, and 81802608) and Knowledge Innovation Program of Wuhan-Shuguang Project (2023020201020496).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.XL., D.ZT. and L.F.; methodology, C.H., Y.JQ., L.XJ., S.Y., J.X., X.SF. and J.T.; validation, C.H., Y.JQ., W.XL., D.ZT. and L.F.; formal analysis, C.H., Y.JQ., D.ZT. and L.F.; investigation, D.Y., D.ZT. and L.F; resources, G.QL., M.D., W.XL. and L.F.; data curation, C.H., Y.JQ., D.ZT. and L.F.; writing-original draft preparation, L.F.; writing-review and editing, D.ZT.; supervision, M.D., W.XL. and L.F.; project administration, L.F. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xiaoli Wang, Zhoutong Dai or Fei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with relevant guidelines and regulations. All animal experiments were approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (Approval No. 2023-3665) and conducted in the Specific Pathogen Free (SPF) animal facility at the Experimental Animal Center of Tongji Medical College. Female BALB/c nude mice and Syrian hamsters were procured from Beijing Vital River Laboratory Animal Technology Co., Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Ye, J., Li, X. et al. A novel GM-CSF-encoding oncolytic adenovirus induces profound autophagy and promotes viral replication to enhance anti-tumor efficacy. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00962-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-025-00962-0

Search

Quick links