Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unveiling the role of the extracellular matrix in the osteosarcoma tumor microenvironment through integrated transcriptomics and experimental validation

Abstract

Osteosarcoma (OS), the most common malignant bone tumor, is characterized by heterogeneous tumor cells and abundant microenvironmental components. The extracellular matrix (ECM)—a complex and dynamic network surrounding tumor cells—plays a pivotal role in OS malignancy (e.g., cell proliferation, metastasis), making insights into ECM involvement critical for advancing OS prognosis. This study conducted bioinformatic analyses on bulk RNA-sequencing and single-cell RNA sequencing data from public databases, initially identifying collagen type V alpha 2 (COL5A2) as a key gene in OS progression. It further validated biological functions and underlying mechanisms of COL5A2 via in vitro experiments, and constructed and validated prognostic models based on ECM signature cell clusters. Results identified osteoblastic cells (OCs) and endothelial cells (ECs) as core cellular components of OS. COL5A2 was highly expressed in OCs, and high COL5A2 expression correlated with significantly reduced overall survival in OS patients. Western blot, CCK-8, and colony formation assays demonstrated that COL5A2 promoted OS cell proliferation by activating the focal adhesion pathway and inducing phosphorylation of the FAK/Paxillin/Akt signaling axis. The prognostic model highlighted the C0 OCs cluster as clinically significant. CellChat analysis uncovered significant activation of the IGFBP pathway in both C0 OCs and C1 ECs, and identified the IGFBP3-TMEM219 axis as the key ligand-receptor pair mediating their crosstalk. This study establishes COL5A2 and the C0 OCs cluster as pivotal ECM-related signatures in OS, confirming COL5A2 drives OS proliferation through focal adhesion signaling and IGFBP3-TMEM219-mediated crosstalk—both representing promising therapeutic targets. Further investigation into ECM components is warranted to refine OS treatment strategies and improve clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the single-cell landscape in OS tissues and normal tissues.
Fig. 2: Construction and validation of ECM signature gene RS in OS tissues.
Fig. 3: Expression patterns and validation of ECM signature genes in OS.
Fig. 4: Functional validation of COL5A2 in MG63 cells.
Fig. 5: Functional validation of COL5A2 in U2OS cells.
Fig. 6: Identification and heterogeneity of ECM-related ECs clusters.
Fig. 7: Identification and heterogeneity of ECM-related OCs.
Fig. 8: Construction and validation of prognostic models for ECM signature cell clusters.

Similar content being viewed by others

Data availability

All the datasets analyzed in this study are publicly available as described in the Materials and methods in the manuscript.

References

  1. Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76.

    Article  PubMed  CAS  Google Scholar 

  2. Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21:vii320–vii5.

    Article  PubMed  Google Scholar 

  3. Chen C, Xie L, Ren T, Huang Y, Xu J, Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021;500:1–10.

    Article  PubMed  CAS  Google Scholar 

  4. Chen C-L, Zhang L, Jiao Y-R, Zhou Y, Ge Q-F, Li P-C, et al. miR-134 inhibits osteosarcoma cell invasion and metastasis through targeting MMP1 and MMP3 in vitro and in vivo. FEBS Lett. 2019;593:1089–101.

    Article  PubMed  CAS  Google Scholar 

  5. Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: where do we go from here?. Pediatr Blood Cancer. 2018;65:e27227.

    Article  PubMed  Google Scholar 

  6. Wang G, Tang S, Chai L, Liang Y, Li T, Bi W, et al. The efficacy and safety of pegylated liposomal doxorubicin-based neoadjuvant chemotherapy in children with osteosarcoma: a retrospective real-world study. Cancer Innov. 2025;4:e162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xiong Y, Wu S, Du Q, Wang A, Wang Z. Integrated analysis of gene expression and genomic aberration data in osteosarcoma (OS). Cancer Gene Ther. 2015;22:524–9.

    Article  PubMed  CAS  Google Scholar 

  8. Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells. 2020;9:976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, et al. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene. 2024;907:148286.

    Article  PubMed  CAS  Google Scholar 

  10. Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, et al. Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy. Int J Mol Sci. 2020;21:5207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 2020;39:178.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang Q, Liu J, Wu B, Wang X, Jiang Y, Zhu D. Role of extracellular vesicles in osteosarcoma. Int J Med Sci. 2022;19:1216–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wishart AL, Conner SJ, Guarin JR, Fatherree JP, Peng Y, McGinn RA, et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv. 2020;6:eabc3175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21:217–38.

    Article  PubMed  CAS  Google Scholar 

  15. Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Sig Transduct Target Ther. 2021;6:153.

    Article  Google Scholar 

  16. Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, et al. Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 2018;9:1065.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, et al. Correction: Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 2021;12:232.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT, et al. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med. 2016;8:360ra135.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen J, Liu Y, Lan J, Liu H, Tang Q, Li Z, et al. Identification and validation of COL6A1 as a novel target for tumor electric field therapy in glioblastoma. CNS Neurosci Ther. 2024;30:e14802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen D, Le SB, Hutchinson TE, Calinescu A-A, Sebastian M, Jin D, et al. Tumor Treating Fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J Clin Invest. 2022;132:e149258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cheng D, Zhang Z, Liu D, Mi Z, Tao W, Fu J, et al. Unraveling T cell exhaustion in the immune microenvironment of osteosarcoma via single-cell RNA transcriptome. Cancer Immunol Immunother CII. 2024;73:35.

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front Oncol. 2022;12:1077067.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen G, Shan H, Xiong S, Zhao Y, van Gestel CAM, Qiu H, et al. Polystyrene nanoparticle exposure accelerates ovarian cancer development in mice by altering the tumor microenvironment. Science total Environ. 2024;906:167592.

    Article  CAS  Google Scholar 

  27. Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front Oncol. 2021;11:709210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mensali N, Köksal H, Joaquina S, Wernhoff P, Casey NP, Romecin P, et al. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun. 2023;14:3375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu Z, Wang Z, Hua Z, Ji Y, Ye Q, Zhang H, et al. Prognostic signature and immunotherapeutic relevance of Focal adhesion signaling pathway-related genes in osteosarcoma. Heliyon. 2024;10:e38523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yu Q, Xiao W, Sun S, Sohrabi A, Liang J, Seidlits SK. Extracellular matrix proteins confer cell adhesion-mediated drug resistance through integrin α V in glioblastoma cells. Front Cell Dev Biol. 2021;9:616580.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao J, Guan J-L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28:35–49.

    Article  PubMed  Google Scholar 

  32. Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 2017;13:581–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science. 2017;358:941–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Heng L, Jia Z, Bai J, Zhang K, Zhu Y, Ma J, et al. Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs. Mol Med Rep. 2017;15:2829–36.

    Article  PubMed  CAS  Google Scholar 

  35. Chao C-C, Lee W-F, Yang W-H, Lin C-Y, Han C-K, Huang Y-L, et al. IGFBP-3 stimulates human osteosarcoma cell migration by upregulating VCAM-1 expression. Life Sci. 2021;265:118758.

    Article  PubMed  CAS  Google Scholar 

  36. Prakash J, Shaked Y. The interplay between extracellular matrix remodeling and cancer therapeutics. Cancer Discov. 2024;14:1375–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Giussani M, Triulzi T, Sozzi G, Tagliabue E. Tumor extracellular matrix remodeling: new perspectives as a circulating tool in the diagnosis and prognosis of solid tumors. Cells. 2019;8:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019;36:171–98.

    Article  PubMed  CAS  Google Scholar 

  39. Han YL, Luo D, Habaxi K, Tayierjiang J, Zhao W, Wang W, et al. COL5A2 inhibits the TGF-β and Wnt/β-catenin signaling pathways to inhibit the invasion and metastasis of osteosarcoma. Front Oncol. 2022;12:813809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chen M, Zhu X, Zhang L, Zhao D. COL5A2 is a prognostic-related biomarker and correlated with immune infiltrates in gastric cancer based on transcriptomics and single-cell RNA sequencing. BMC Med Genomics. 2023;16:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Salimian N, Peymani M, Ghaedi K, Hashemi M, Rahimi E. Collagen 1A1 (COL1A1) and Collagen11A1(COL11A1) as diagnostic biomarkers in Breast, colorectal and gastric cancers. Gene. 2024;892:147867.

    Article  PubMed  CAS  Google Scholar 

  42. Paul AM, George B, Saini S, Pillai MR, Toi M, Costa L, et al. Delineation of pathogenomic insights of breast cancer in young women. Cells. 2022;11:1927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jin Y, Song X, Sun X, Ding Y. Up-regulation of collagen type V alpha 2 (COL5A2) promotes malignant phenotypes in gastric cancer cell via inducing epithelial-mesenchymal transition (EMT). Open Med. 2023;18:20220593.

    Article  CAS  Google Scholar 

  44. Gong H, Tao Y, Xiao S, Li X, Fang K, Wen J, et al. Identification of an EMT-related gene-based prognostic signature in osteosarcoma. Cancer Med. 2023;12:12912–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chauhan A, Khan T. Focal adhesion kinase-An emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chem Biol Drug Des. 2021;97:774–94.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11:1473–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Maller O, Drain AP, Barrett AS, Borgquist S, Ruffell B, Zakharevich I, et al. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat Mater. 2021;20:548–59.

    Article  PubMed  CAS  Google Scholar 

  48. Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, et al. Transformable ECM deprivation system effectively suppresses renal cell carcinoma by reversing anoikis resistance and increasing chemotherapy sensitivity. Adv Mater. 2022;34:e2203518.

    Article  PubMed  Google Scholar 

  49. D’Addio F, Montefusco L, Lunati ME, Pastore I, Assi E, Petrazzuolo A, et al. Targeting a novel apoptotic pathway in human disease. Bioessays. 2023;45:e2200231.

    Article  PubMed  Google Scholar 

  50. D’Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. 2022;13:684.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (grant number: 82403886, 82002842), and the National Defense Science and Technology Fund for Distinguished Young Scholars (grant number: 2022-JCJQ-ZQ-018), and Innovation Science Fund of the Fourth Medical Center of PLA General Hospital (grant number: 2025-4ZX-MS-03).

Author information

Authors and Affiliations

Authors

Contributions

Yuyang Liu and Yuchen Han: Data analysis, experiments, writing review and editing. Zixuan Guo: Investigation and methodology. Yinglong Zhang and Xiuyuan Xu: Investigation and writing review. Jianxiong Li, Meng Xu and Wenting Qi: Designed the study, funding acquisition, project administration, supervision, data analysis and interpretation, and writing-original draft. All authors contributed to the systematic review of the published findings and sources. They all read and approved the final manuscript.

Corresponding authors

Correspondence to Wenting Qi, Meng Xu or Jianxiong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All methods were performed in accordance with the relevant guidelines and regulations. The protocol for this study was approved by the Ethics Committee of the Fourth Medical Center of Chinese PLA General Hospital (agreement number: 2024KY0112-KS001).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Han, Y., Guo, Z. et al. Unveiling the role of the extracellular matrix in the osteosarcoma tumor microenvironment through integrated transcriptomics and experimental validation. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-025-00970-0

Search

Quick links