Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demethoxycurcumin suppresses HK2-mediated glycolysis by targeting PTEN/Akt signaling

Abstract

Aerobic glycolysis is a hallmark of tumor cells, with the expression of glycolytic enzymes often being upregulated in many cancers, leading to enhanced metabolic activity. Among the key rate-limiting enzymes in this process, Hexokinase 2 (HK2) plays a crucial role in sustaining the biological activities of human cancers. Therefore, HK2 is considered a potential therapeutic target, although effective targeted drugs for oral squamous cell carcinoma (OSCC) treatment are currently lacking. To confirm potent anti-tumor agents that inhibit HK2 expression, we screened a library of 639 natural products and discovered that Demethoxycurcumin (Deme) was the most effective anti-tumor agent via inhibiting HK2-mediated glycolysis in OSCC cells, inducing intrinsic apoptosis. Mechanistically, Deme enhanced the interaction between USP13 and PTEN, leading to the stabilization of PTEN and consequent downregulation of HK2 via the PTEN/Akt/HK2 pathway. Notably, HK2 overexpression reversed the inhibitory effect of Deme on OSCC cells. Furthermore, at the tumor-inhibitory dose, Deme showed no effect on non-tumor HaCat cells. In vivo, Deme significantly suppressed tumor growth without apparent toxicity to vital organs. Together, these data suggest that Deme is a promising and safe anti-tumor compound that downregulates HK2 expression, providing a potential therapeutic strategy for OSCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HK2 maintains the tumorigenic potential of oral squamous cell carcinoma (OSCC) cells.
Fig. 2: HK2 deficiency delays the tumor growth of OSCC cells in vivo.
Fig. 3: Demethoxycurcumin (Deme) inhibits glycolysis in OSCC.
Fig. 4: Deme reduces HK2 protein levels and triggers intrinsic apoptosis.
Fig. 5: Deme modulates the PTEN/Akt/HK2 signaling pathway.
Fig. 6: Deme enhances PTEN deubiquitination.
Fig. 7: Knockout of USP13 can reverse the inhibitory effect of Deme on OSCC cells.
Fig. 8: Deme inhibits tumor growth in vivo.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023;15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ford PJ, Rich AM. Tobacco Use and Oral Health. Addiction. 2021;116:3531–40.

    Article  PubMed  Google Scholar 

  3. Ghantous Y, Abu Elnaaj I. [Global Incidence And Risk Factors Of Oral Cancer]. Harefuah. 2017;156:645–9.

    PubMed  Google Scholar 

  4. Hosni A, Chiu K, Huang SH, Xu W, Huang J, Bayley A, et al. Non-operative management for oral cavity carcinoma: Definitive radiation therapy as a potential alternative treatment approach. Radiother Oncol. 2021;154:70–5.

    Article  PubMed  Google Scholar 

  5. Ju WT, Xia RH, Zhu DW, Dou SJ, Zhu GP, Dong MJ, et al. A pilot study of neoadjuvant combination of anti-PD-1 camrelizumab and VEGFR2 inhibitor apatinib for locally advanced resectable oral squamous cell carcinoma. Nat Commun. 2022;13:5378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhong LP, Zhang CP, Ren GX, Guo W, William WN Jr., Sun J, et al. Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol. 2013;31:744–51.

    Article  CAS  PubMed  Google Scholar 

  7. Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022;86:1216–30.

    Article  CAS  PubMed  Google Scholar 

  8. Shangguan X, He J, Ma Z, Zhang W, Ji Y, Shen K, et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 2021;12:1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu Z, Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci. 2018;43:301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharm Sin. 2024;45:1533–55.

    Article  CAS  Google Scholar 

  11. Xia T, Meng L, Xu G, Sun H, Chen H. TRIM33 promotes glycolysis through regulating P53 K48-linked ubiquitination to promote esophageal squamous cell carcinoma growth. Cell Death Dis. 2024;15:740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Song J, He Y, Liu Y, Liu Z, Sun W, et al. CRISPR/Cas9 Screens Reveal that Hexokinase 2 Enhances Cancer Stemness and Tumorigenicity by Activating the ACSL4-Fatty Acid β-Oxidation Pathway. Adv Sci (Weinh). 2022;9:e2105126.

    Article  PubMed  Google Scholar 

  13. Zhang L, Jiang C, Zhong Y, Sun K, Jing H, Song J, et al. STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2. Nat Cell Biol. 2023;25:1208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non-cancerous diseases. J Cell Physiol. 2019;234:19320–30.

    Article  CAS  PubMed  Google Scholar 

  15. Lu B, Chen X, Chen H, Li Q, Li H, Xu Y, et al. Demethoxycurcumin mitigates inflammatory responses in lumbar disc herniation via MAPK and NF-κB pathways in vivo and in vitro. Int Immunopharmacol. 2022;108:108914.

    Article  CAS  PubMed  Google Scholar 

  16. Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J Cell Physiol. 2018;233:9247–60.

    Article  CAS  PubMed  Google Scholar 

  17. Tang J, Peng H, Xu F, Luo P, Liu D, Chen L. Demethoxycurcumin represses cervical cancer growth through PPARγ-regulated proliferation and apoptosis. Acta Biochim Biophys Sin (Shanghai). 2023;55:1331–3.

    CAS  PubMed  Google Scholar 

  18. Wu Y, Zhang P, Yang H, Ge Y, Xin Y. Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells. Mol Med Rep. 2017;16:539–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teng YN, Hsieh YW, Hung CC, Lin HY. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity. J Agric Food Chem. 2015;63:847–55.

    Article  CAS  PubMed  Google Scholar 

  20. Huang C, Lu HF, Chen YH, Chen JC, Chou WH, Huang HC. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement Med Ther. 2020;20:68.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis. 2020;11:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li M, Zhao Q, Liao J, Wang X, Liu L, Zhang X, et al. Dioscin inhibiting EGFR-mediated Survivin expression promotes apoptosis in oral squamous cell carcinoma cells. J Cancer. 2023;14:2027–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Z, Han S, Liao J, Wang R, Yu X, Li M. Isoliquiritigenin Inhibits Oral Squamous Cell Carcinoma and Overcomes Chemoresistance by Destruction of Survivin. Am J Chin Med. 2023;51:2221–41.

    Article  CAS  PubMed  Google Scholar 

  24. Liao J, Qing X, Li X, Gan Y, Wang R, Han S, et al. TRAF4 regulates ubiquitination-modulated survivin turnover and confers radioresistance. Int J Biol Sci. 2024;20:182–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, et al. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal. 2023;110:110851.

    Article  CAS  PubMed  Google Scholar 

  26. Xie L, Liao J, Liu W, Wang R, Li X, Li W, et al. Gastrodin overcomes chemoresistance via inhibiting Skp2-mediated glycolysis. Cell Death Discov. 2023;9:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou L, Li M, Yu X, Gao F, Li W. Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells. Int J Biol Sci. 2019;15:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao F, Yu X, Li M, Zhou L, Liu W, Li W, et al. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis. 2020;11:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fontana F, Giannitti G, Marchesi S, Limonta P. The PI3K/Akt Pathway and Glucose Metabolism: A Dangerous Liaison in Cancer. Int J Biol Sci. 2024;20:3113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64:3892–9.

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Wang D, Zheng X, Li Y, Ding C, Wang M, et al. Combination of niclosamide and quinacrine inactivates Akt/HK2/Cyclin D1 axis mediated by glucose deprivation towards the inhibition of melanoma cell proliferation. Biomed Pharmacother. 2023;163:114865.

    Article  CAS  PubMed  Google Scholar 

  33. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li W, Peng C, Lee MH, Lim D, Zhu F, Fu Y, et al. TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res. 2013;73:6938–50.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, et al. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 2013;15:1486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  38. Yang HL, Chang CW, Vadivalagan C, Pandey S, Chen SJ, Lee CC, et al. Coenzyme Q(0) inhibited the NLRP3 inflammasome, metastasis/EMT, and Warburg effect by suppressing hypoxia-induced HIF-1α expression in HNSCC cells. Int J Biol Sci. 2024;20:2790–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer. 2024;23:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, et al. Glycometabolic rearrangements-aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao Y, Yang K, Liu P, Ma D, Lei P, Liu Q. Deoxyribonuclease 1-like 3 Inhibits Hepatocellular Carcinoma Progression by Inducing Apoptosis and Reprogramming Glucose Metabolism. Int J Biol Sci. 2022;18:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol. 2024;100:17–27.

    Article  CAS  PubMed  Google Scholar 

  43. Guan Y, Yao W, Yu H, Feng Y, Zhao Y, Zhan X, et al. Chronic stress promotes colorectal cancer progression by enhancing glycolysis through β2-AR/CREB1 signal pathway. Int J Biol Sci. 2023;19:2006–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Kil BJ, et al. Negative Regulation of CPSF6 Suppresses the Warburg Effect and Angiogenesis Leading to Tumor Progression Via c-Myc Signaling Network: Potential Therapeutic Target for Liver Cancer Therapy. Int J Biol Sci. 2024;20:3442–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang W, Liu Z, Zhao L, Sun J, He Q, Yan W, et al. Hexokinase 2 enhances the metastatic potential of tongue squamous cell carcinoma via the SOD2-H2O2 pathway. Oncotarget. 2017;8:3344–54.

    Article  PubMed  Google Scholar 

  47. Zheng Y, Zhan Y, Zhang Y, Zhang Y, Liu Y, Xie Y, et al. Hexokinase 2 confers radio-resistance in hepatocellular carcinoma by promoting autophagy-dependent degradation of AIMP2. Cell Death Dis. 2023;14:488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18:33.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Shao F, Yang Y, Wang W, Yang X, Li R, et al. A non-metabolic function of hexokinase 2 in small cell lung cancer: promotes cancer cell stemness by increasing USP11-mediated CD133 stability. Cancer Commun (Lond). 2022;42:1008–27.

    Article  PubMed  Google Scholar 

  50. Kim S, Koh J, Song SG, Yim J, Kim M, Keam B, et al. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration. BMC Cancer. 2022;22:1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tantai J, Pan X, Chen Y, Shen Y, Ji C. TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis. 2022;13:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu J, Hu L, Wu F, Zou L, He T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget. 2017;8:32332–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao L, Yu N, Zhai Y, Yang Y, Wang Y, Yang Y, et al. The ubiquitin-like protein UBTD1 promotes colorectal cancer progression by stabilizing c-Myc to upregulate glycolysis. Cell Death Dis. 2024;15:502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen X, Sun N, Li R, Sang X, Li X, Zhao J, et al. Targeting HLA-F suppresses the proliferation of glioma cells via a reduction in hexokinase 2-dependent glycolysis. Int J Biol Sci. 2021;17:1263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang B, Jiang Y, Song S, Jing W, Yang H, Zhao L, et al. ASPP2 suppresses tumour growth and stemness characteristics in HCC by inhibiting Warburg effect via WNT/β-catenin/HK2 axis. J Cell Mol Med. 2023;27:659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254:109698.

    Article  CAS  PubMed  Google Scholar 

  57. Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020;11:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu T, Ye P, Ye Y, Han B. MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci. 2021;17:2970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, et al. UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. J Exp Clin Cancer Res. 2022;41:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao X, Zhou T, Wang Y, Bao M, Ni C, Ding L, et al. Trigred motif 36 regulates neuroendocrine differentiation of prostate cancer via HK2 ubiquitination and GPx4 deficiency. Cancer Sci. 2023;114:2445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li X, Liang Q, Zhou L, Deng G, Xiao Y, Gan Y, et al. Survivin degradation by bergenin overcomes pemetrexed resistance. Cell Oncol (Dordr). 2023;46:1837–53.

    Article  CAS  PubMed  Google Scholar 

  63. Sarkar J, Das M, Howlader MSI, Prateeksha P, Barthels D, Das H. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions. Cell Death Dis. 2022;13:908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan X, Yao C, Fang C, Han M, Gong C, Hu D, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer. Int J Biol Sci. 2022;18:585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu S, Deng R, Wang W, Zou D, He L, Wei Z, et al. Pharmacological manipulation of TRPC5 by kaempferol attenuates metastasis of gastrointestinal cancer via inhibiting calcium involved in the formation of filopodia. Int J Biol Sci. 2024;20:4922–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mansuer M, Zhou L, Wang C, Gao L, Jiang Y. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance. Cell Death Dis. 2024;15:522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin CY, Hung CC, Wang CCN, Lin HY, Huang SH, Sheu MJ. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. Phytomedicine. 2019;53:28–36.

    Article  CAS  PubMed  Google Scholar 

  68. Kao CC, Cheng YC, Yang MH, Cha TL, Sun GH, Ho CT, et al. Demethoxycurcumin induces apoptosis in HER2 overexpressing bladder cancer cells through degradation of HER2 and inhibiting the PI3K/Akt pathway. Environ Toxicol. 2021;36:2186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu D, Jin J, Yu H, Zhao Z, Ma D, Zhang C, et al. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J Exp Clin Cancer Res. 2017;36:44.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li W, Zheng M, Wu S, Gao S, Yang M, Li Z, et al. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J Exp Clin Cancer Res. 2017;36:58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Hunan Natural Science Foundation Outstanding Youth Fund [grant numbers 2023JJ10091]; Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University [grant number BJ202203]; Research Project of Teaching Reform in Colleges and Universities of Hunan Province [HNJG-20230110]; and Education and Teaching Reform Research Project of Central South University [2023jy200].

Author information

Authors and Affiliations

Authors

Contributions

JZL: Data curation, methodology, formal analysis, writing original draft, writing–review and editing, visualization, project administration. SMT: Writing–review and editing, visualization, data curation, Formal analysis, methodology, project administration. SZH, RRW, PFG: Formal analysis, methodology, project administration. ZW: Fundings, methodology. XFY: Methodology, visualization, and supervision. WL: Fundings, writing–review and editing, conceptualization, and supervision. All Authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee, the Third Xiangya Hospital of Central South University (Changsha, China). All methods were performed in accordance with the relevant guidelines and regulations. Clinical trial number: not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Tan, S., Han, S. et al. Demethoxycurcumin suppresses HK2-mediated glycolysis by targeting PTEN/Akt signaling. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-025-00972-y

Search

Quick links