Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The FOSB-IGFBP5-IGF-1 axis: a novel regulatory pathway that suppresses prostate cancer growth

Abstract

While the functions of activator protein-1 (AP-1) family transcription factors in prostate cancer (PCa) have been well researched, the specific role and mechanisms of FOSB in PCa progression are poorly understood. Here, we aimed to elucidate the precise role of FOSB in PCa and its underlying molecular mechanisms. A comprehensive investigation involving bioinformatics analysis of the TCGA and GEO datasets, validation in clinical PCa samples and cell lines, functional studies in vitro and in vivo, and RNA sequencing coupled with targeted validation (dual-luciferase reporter assays, ChIP‒qPCR, RT‒qPCR, Western blotting, and immunohistochemistry) was performed. FOSB is downregulated in PCa, and its high expression in tumours may reduce the risk of PCa progression by influencing characteristic growth-related cancer pathways. FOSB overexpression significantly inhibited PCa cell proliferation, increased apoptosis in vitro, and attenuated tumour growth in vivo, whereas FOSB knockdown resulted in the opposite effects. Mechanistically, FOSB transcripts were enriched in cell nuclei, where they upregulated the expression of IGFBP5, a gene that modulates the cellular response to IGF-1. This FOSB-mediated upregulation of IGFBP5 expression subsequently weakened the susceptibility of IGF1R to IGF-1 stimulation and suppressed the downstream PI3K/Akt and Ras/Raf/ERK oncogenic pathways. Our findings identify the novel FOSB–IGFBP5–IGF-1 axis upstream of PI3K/Akt and Ras/Raf/ERK signalling as a key regulator of PCa progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOSB expression patterns and clinical associations in prostate cancer.
Fig. 2: Effects of FOSB overexpression and knockdown on PCa cell growth in vivo and in vitro.
Fig. 3: The regulatory relationship between FOSB expression and androgen receptor signalling activity.
Fig. 4: FOSB upregulated IGFBP5 expression in PCa.
Fig. 5: FOSB inhibited prostate cancer growth by suppressing IGF1R activity, which was dependent on the binding of IGFBP5 to IGF-1.
Fig. 6: Single-cell transcriptomics reanalysis identified FOSB as a key marker and revealed its association with the IGFBP5, and insulin signalling pathway activity in PCa.
Fig. 7: FOSB regulates prostate cancer growth by suppressing the PI3K/Akt and Ras/Raf/ERK pathways through the inactivation of IGF1R.

Similar content being viewed by others

Data availability

The RNA sequencing data discussed in this publication have been deposited in Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE304134. The single-cell dataset generated in this study is available from GEO under the accession numbers GSE221603 and GSE206962. The public data analysed in this study are available from GEO under the accessions GSE200879 and GSE46602. The TCGA prostate adenocarcinoma (PRAD) dataset was downloaded from UCSC Xena (https://xenabrowser.net/datapages/). All the scripts used for data processing and analysis are available from the corresponding author upon reasonable request.

References

  1. Wasim S, Lee SY, Kim J. Complexities of prostate cancer. Int J Mol Sci. 2022;23:14257.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang AJ, Autio KA, Roach M 3rd, Scher HI. High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol. 2014;11:308–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer. 2025;156:1336–46.

    Article  PubMed  Google Scholar 

  4. Rizzo A, Santoni M, Mollica V, Fiorentino M, Brandi G, Massari F. Microbiota and prostate cancer. Semin Cancer Biol. 2022;86:1058–65.

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy TAC, Ong WL, Quon H, Cheung P, Chu W, Chung H, et al. Stereotactic radiation therapy for localized prostate cancer: 10-year outcomes from three prospective trials. Int J Radiat Oncol Biol Phys. 2025;121:325–30.

    Article  PubMed  Google Scholar 

  6. Gillessen S, Bossi A, Davis ID, de Bono J, Fizazi K, James ND, et al. Management of patients with advanced prostate cancer. Part I: intermediate-/high-risk and locally advanced disease, biochemical relapse, and side effects of hormonal treatment: Report of the Advanced Prostate Cancer Consensus Conference 2022. Eur Urol. 2023;83:267–93.

    Article  CAS  PubMed  Google Scholar 

  7. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS, et al. Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget. 2017;8:56698–713.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravi P, Wang V, Fichorova RN, McGregor B, Wei XX, Basaria S, et al. IGF-1 axis changes with ADT and docetaxel in metastatic prostate cancer. Endocr Relat Cancer. 2023;30:e230241.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matsushita M, Fujita K, Hayashi T, Kayama H, Motooka D, Hase H, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 2021;81:4014–26.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Cai C, Zhang M, Shi L, Wang J, Zhang H, et al. Ephrin-A2 promotes prostate cancer metastasis by enhancing angiogenesis and promoting EMT. J Cancer Res Clin Oncol. 2021;147:2013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139–55.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li N, Liu Q, Han Y, Pei S, Cheng B, Xu J, et al. ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun. 2022;13:7281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamada Y, Beltran H. The treatment landscape of metastatic prostate cancer. Cancer Lett. 2021;519:20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, et al. B7-H3 as a therapeutic target in advanced prostate cancer. Eur Urol. 2023;83:224–38.

    Article  CAS  PubMed  Google Scholar 

  18. Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, et al. Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov. 2014;4:334–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siech C, Rutz J, Maxeiner S, Grein T, Sonnenburg M, Tsaur I, et al. Insulin-like growth factor-1 influences prostate cancer cell growth and invasion through an integrin à3, à5, àV, and á1 dependent mechanism. Cancers. 2022;14:363.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lubik AA, Gunter JH, Hendy SC, Locke JA, Adomat HH, Thompson V, et al. Insulin increases de novo steroidogenesis in prostate cancer cells. Cancer Res. 2011;71:5754–64.

    Article  CAS  PubMed  Google Scholar 

  21. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.

    Article  CAS  PubMed  Google Scholar 

  22. Guo XF, Zhang Z, Zheng L, Zhou YM, Wu HY, Liang CQ, et al. Developmental expression patterns of fosl genes in Xenopus tropicalis. Gene Expr Patterns. 2019;34:119056.

    Article  CAS  PubMed  Google Scholar 

  23. Huo L, Rothstein TL. Receptor-specific induction of individual AP-1 components in B lymphocytes. J Immunol. 1995;154:3300–9.

    Article  CAS  PubMed  Google Scholar 

  24. Fittall MW, Mifsud W, Pillay N, Ye H, Strobl AC, Verfaillie A, et al. Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun. 2018;9:2150.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, et al. Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: dependent on p53 status. J Exp Clin Cancer Res. 2024;43:237.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao Y, Tang H, Kuai Y, Xu J, Sun B, Li Y. Identification of the function of FOSB in cholangiocarcinoma using bioinformatics analysis. Transl Cancer Res. 2023;12:3629–40.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang S, Yu L, Sun X, Zhang B. Establishment and verification of potential biomarkers for cholangiocarcinoma. Exp Ther Med. 2022;24:546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang C, Chen Y, Tang G, Shen T, Li L. Dysregulation of c-Jun (JUN) and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) in obese people and their predictive values for metabolic syndrome. Endocr J. 2024;71:1157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skrypnik K, Suliburska J, Skrypnik D, Pilarski Ł, Reguła J, Bogdański P. The genetic basis of obesity complications. Acta Sci Pol Technol Aliment. 2017;16:83–91.

    CAS  PubMed  Google Scholar 

  30. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35:314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma X, Zheng J, He K, Wang L, Wang Z, Wang K, et al. TGFA expression is associated with poor prognosis and promotes the development of cervical cancer. J Cell Mol Med. 2024;28:e18086.

    Article  CAS  PubMed  Google Scholar 

  32. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

    Article  PubMed  Google Scholar 

  33. Song H, Tian X, He L, Liu D, Li J, Mei Z, et al. CREG1 deficiency impaired myoblast differentiation and skeletal muscle regeneration. J Cachexia Sarcopenia Muscle. 2024;15:587–602.

    Article  PubMed  PubMed Central  Google Scholar 

  34. He K, Li J, Huang X, Zhao W, Wang K, Wang T, et al. KNL1 is a prognostic and diagnostic biomarker related to immune infiltration in patients with uterine corpus endometrial carcinoma. Front Oncol. 2023;13:1090779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duan S, Huang W, Liu X, Liu X, Chen N, Xu Q, et al. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Cancer Res. 2018;37:304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3:778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo W, Li L, He J, Liu Z, Han M, Li F, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet. 2020;52:908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He MX, Cuoco MS, Crowdis J, Bosma-Moody A, Zhang Z, Bi K, et al. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat Med. 2021;27:426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henry GH, Malewska A, Joseph DB, Malladi VS, Lee J, Torrealba J, et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 2018;25:3530–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karthaus WR, Hofree M, Choi D, Linton EL, Turkekul M, Bejnood A, et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science. 2020;368:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 2020;182:1232–.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai W, Ma Y, Song L, Cao N, Gao J, Zhou S, et al. IGF-1R down regulates the sensitivity of hepatocellular carcinoma to sorafenib through the PI3K / akt and RAS / raf / ERK signaling pathways. BMC Cancer. 2023;23:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang H, Li TW, Peng J, Mato JM, Lu SC. Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochem J. 2011;436:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Destefanis F, Manara V, Bellosta P. Myc as a regulator of ribosome biogenesis and cell competition: a link to cancer. Int J Mol Sci. 2020;21:4037.

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10:301–9.

    Article  PubMed  Google Scholar 

  47. Guo J, Li N, Liu Q, Hao Z, Zhu G, Wang X, et al. KMT2C deficiency drives transdifferentiation of double-negative prostate cancer and confer resistance to AR-targeted therapy. Cancer Cell. 2025;43:1261–78.e10.

    Article  CAS  PubMed  Google Scholar 

  48. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–d92.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McQueeney K, Dealy CN. Roles of insulin-like growth factor-I (IGF-I) and IGF-I binding protein-2 (IGFBP2) and -5 (IGFBP5) in developing chick limbs. Growth Horm IGF Res. 2001;11:346–63.

    Article  CAS  PubMed  Google Scholar 

  50. Salih DA, Tripathi G, Holding C, Szestak TA, Gonzalez MI, Carter EJ, et al. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci USA. 2004;101:4314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang JR, Cho YJ, Lee Y, Park Y, Han HD, Ahn HJ, et al. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis. Sci Rep. 2016;6:39334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue X, Li Z, Zhao J, Zhao Z, Li Z, Li Y, et al. Advances in the relationship between AP-1 and tumorigenesis, development and therapy resistance. Discov Oncol. 2025;16:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol. 2023;14:1224892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi D, Mu S, Hu B, Zhang S, Liu J, Zhang Z, et al. Prognostic role of c-Jun activation domain-binding protein-1 in cancer: A systematic review and meta-analysis. J Cell Mol Med. 2021;25:2750–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsiambas E, Mastronikolis N, PF P, Kyrodimos E, Chrysovergis A, Papanikolaou V, et al. c-Jun/c-Fos complex in laryngeal squamous cell carcinoma. J buon. 2020;25:618–20.

    PubMed  Google Scholar 

  56. Gao S, Gang J, Yu M, Xin G, Tan H. Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer. BMC Cancer. 2021;21:791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu B, Yu M, Ma X, Sun J, Liu C, Wang C, et al. IFNα potentiates anti-PD-1 efficacy by remodeling glucose metabolism in the hepatocellular carcinoma microenvironment. Cancer Discov. 2022;12:1718–41.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Liu M, Liu X, Guo X. LINC00963-FOSB-mediated transcription activation of UBE3C enhances radioresistance of breast cancer cells by inducing ubiquitination-dependent protein degradation of TP73. J Transl Med. 2023;21:321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang C, Jiang Y, Shao W, Shi W, Gao X, Qin W, et al. Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with gastric cancer. Int J Oncol. 2016;49:1489–96.

    Article  CAS  PubMed  Google Scholar 

  60. Park JA, Na HH, HO Jin, Kim KC. Increased expression of FosB through reactive oxygen species accumulation functions as pro-apoptotic protein in piperlongumine treated MCF7 breast cancer cells. Mol Cells. 2019;42:884–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol. 2022;13:983793.

    Article  Google Scholar 

  62. Wu K, Zhou M, Wu QX, Yuan SX, Wang DX, Jin JL, et al. The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int J Oncol. 2015;46:1205–13.

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Hong Q, Geng X, Chi K, Cai G, Wu D. Insulin-like growth factor binding protein 5-A probable target of kidney renal papillary renal cell carcinoma. Biomed Res Int. 2019;2019:3210324.

    PubMed  PubMed Central  Google Scholar 

  64. Sinha KM, Bagheri-Yarmand R, Lahiri S, Lu Y, Zhang M, Amra S, et al. Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer. Oncogene. 2019;38:5038–49.

    Article  CAS  PubMed  Google Scholar 

  65. Chen X, Yu Q, Pan H, Li P, Wang X, Fu S. Overexpression of IGFBP5 enhances radiosensitivity through PI3K-AKT pathway in prostate cancer. Cancer Manag Res. 2020;12:5409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, N PM, Mamat Yusof MN, Kampan NC, et al. Insulin-like growth factor 1 (IGF1) and its isoforms: insights into the mechanisms of endometrial cancer. Cancers. 2025;17:129.

  67. Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, et al. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer. 2023;23:371.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yu H. Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472–89.

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Wang Y, Lei P, Qu X, Qi R, Chen D, et al. IGFBP5 regulates fibrocartilage differentiation and cartilage injury induced by T-2 toxin via blocking IGF-1/IGF-1R signalling. Rheumatology. 2025;64:4051–60.

    Article  CAS  PubMed  Google Scholar 

  70. Fan Y, Wu YJ, Guo K, Zhou XQ, Abulaiti A, Olatunji OJ, et al. Interaction with IGF1 overrides ANXA2-mediated anti-inflammatory functions of IGFBP5 in vivo. Front Immunol. 2024;15:1539317.

    Article  CAS  PubMed  Google Scholar 

  71. Pakradooni R, Shukla N, Gupta K, Kumar J, Isali I, Khalifa AO, et al. Diosmetin induces modulation of Igf-1 and Il-6 levels to alter rictor-Akt-PKCà cascade in inhibition of prostate cancer. J Clin Med. 2021;10:4741.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER, et al. Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia. 2006;20:1254–60.

    Article  CAS  PubMed  Google Scholar 

  73. Hu L, Shi W, Liu K, Ma D, Xin Q, Wang Z, et al. EGFR bypass activation mediates acquired resistance to regorafenib in hepatocellular carcinoma. Front Med. 2024;11:1464610.

    Article  Google Scholar 

  74. Qian X, Bi QY, Wang ZN, Han F, Liu LM, Song LB, et al. Qingyihuaji Formula promotes apoptosis and autophagy through inhibition of MAPK/ERK and PI3K/Akt/mTOR signaling pathway on pancreatic cancer in vivo and in vitro. J Ethnopharmacol. 2023;307:116198.

    Article  CAS  PubMed  Google Scholar 

  75. Kang JB, Koh PO. Retinoic acid alleviates the reduction of Akt and Bad phosphorylation and regulates Bcl-2 family protein interactions in animal models of ischemic stroke. PLoS ONE. 2024;19:e0303213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guefack MF, Talukdar D, Mukherjee R, Guha S, Mitra D, Saha D, et al. Hypericum roeperianum bark extract suppresses breast cancer proliferation via induction of apoptosis, downregulation of PI3K/Akt/mTOR signaling cascade and reversal of EMT. J Ethnopharmacol. 2024;319:117093.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Guangzhou Science and Technology Plan Project, Guangzhou Health Technology Project, Panyu District Science and Technology Plan Project for their support.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2023YFE0204500), and the National Natural Science Foundation of China (No. 82272856).

Author information

Authors and Affiliations

Authors

Contributions

SCZ, QingL, and TW conceived and designed the experiments. JH performed the experiments. JH, SDG, LLZ, and XLS acquired and analysed the data. JH wrote this manuscript. QuL, XFL, and WJT checked the manuscript. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Tao Wang or Shan-Chao Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study adhered to the guidelines for animal and human research ethics. The animal experiments in this study were reviewed and approved by the Animal Ethical and Welfare Committee (AEWC) (Approval No. IAEC-K-230615-04). Human study protocols were approved by the Jiangmen Central Hospital Ethics Committee (Approval No. [2023]51), Jiangmen, China. Written informed consent, detailing the study’s objectives, was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Ge, SD., Zhao, LL. et al. The FOSB-IGFBP5-IGF-1 axis: a novel regulatory pathway that suppresses prostate cancer growth. Cancer Gene Ther (2026). https://doi.org/10.1038/s41417-026-01012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41417-026-01012-z

Search

Quick links