Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin β6/Annexin A2 axis triggers autophagy to orchestrate hepatocellular carcinoma radioresistance

Abstract

Radiotherapy (RT) is one of the main therapies for hepatocellular carcinoma (HCC), but its effectiveness has been constrained due to the resistance effect of radiation. Thus, the factors involved in radioresistance are evaluated and the underlying molecular mechanisms are also done. In this present study, we identified Integrin β6 (ITGB6) as a potential radioresistant gene through an integrative analysis of transcriptomic profiles, proteome datasets and survival using HCC cases treated with IR. We show that ITGB6 functionally contributed to radioresistance by activating autophagy through a series of in vitro and in vivo methods, such as clonogenic assays, autophagy flux (LC3B-GFP-mCherry reporter) analysis and a subcutaneous transplantation model. Mechanically, ITGB6 binds to Annexin A2 (ANXA2) and enhanced its stability by competitively antagonizing proteasome mediated ANXA2 degradation, thereby promoting autophagy and radioresistance. Notably, HCC radioresistance was significantly improved by either blocking ITGB6 or autophagy, but the combination was more effective. Importantly, ITGB6/ANXA2 axis triggered autophagic program endowed HCC cells with radioresistant activity in a radiated patient-derived xenograft (PDX) model and hydrodynamic injection in liver-specific Itgb6-knockout mice, further supported by clinical evidence. Together, our data revealed that ITGB6 is a radioresistant gene stabilizing the autophagy regulatory protein ANXA2, providing insights into the biological and potentially clinical significance of ITGB6/ANXA2 axis in radiotherapy planning of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ionizing radiation (IR)-mediated ITGB6 overexpression is clinically relevant in HCC radioresistance.
Fig. 2: ITGB6 confers radioresistance to HCC cells probably through autophagy in vitro and in vivo.
Fig. 3: ITGB6 induces autophagic flux of HCC cells in vitro.
Fig. 4: ANXA2 is essentially required for ITGB6-induced autophagy and radioresistance in HCC.
Fig. 5: ITGB6 interacts with ANXA2 to abrogate ANXA2 ubiquitylation.
Fig. 6: ITGB6/ANXA2 axis guides the applicability of HCC patients to RT.
Fig. 7: Working model depicting the mechanisms that ITGB6/ANXA2 axis and autophagy underlying radioresistance of HCC cells.

Similar content being viewed by others

Data availability

RNA-seq data was deposited in the NCBI SRA database with the BioProject accession PRJNA1170233. Full blots of immunoblot experiments can be found in supplemental materials. All other data are available from the corresponding authors upon request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23:78–94.

    CAS  PubMed  Google Scholar 

  3. Rajyaguru DJ, Borgert AJ, Smith AL, Thomes RM, Conway PD, Halfdanarson TR, et al. Radiofrequency Ablation Versus Stereotactic Body Radiotherapy for Localized Hepatocellular Carcinoma in Nonsurgically Managed Patients: Analysis of the National Cancer Database. J Clin Oncol. 2018;36:600–8.

    CAS  PubMed  Google Scholar 

  4. Wei X, Jiang Y, Zhang X, Feng S, Zhou B, Ye X, et al. Neoadjuvant Three-Dimensional Conformal Radiotherapy for Resectable Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Randomized, Open-Label, Multicenter Controlled Study. J Clin Oncol. 2019;37:2141–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed KM, Zhang H, Park CC. NF-kappaB regulates radioresistance mediated by beta1-integrin in three-dimensional culture of breast cancer cells. Cancer Res. 2013;73:3737–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao H, Zeng ZZ, Fay KS, Veine DM, Staszewski ED, Morgan M, et al. Role of alphabeta(1) Integrin Up-regulation in Radiation-Induced Invasion by Human Pancreatic Cancer Cells. Transl Oncol. 2011;4:282–92.

    PubMed  PubMed Central  Google Scholar 

  8. Monferran S, Skuli N, Delmas C, Favre G, Bonnet J, Cohen-Jonathan-Moyal E, et al. Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer. 2008;123:357–64.

    CAS  PubMed  Google Scholar 

  9. Cao Q, Cai W, Li T, Yang Y, Chen K, Xing L, et al. Combination of integrin siRNA and irradiation for breast cancer therapy. Biochem Biophys Res Commun. 2006;351:726–32.

    CAS  PubMed  Google Scholar 

  10. Hehlgans S, Eke I, Storch K, Haase M, Baretton GB, Cordes N. Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells. Radiother Oncol. 2009;92:362–70.

    CAS  PubMed  Google Scholar 

  11. Eke I, Dickreuter E, Cordes N. Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by beta1 integrin inhibition. Radiother Oncol. 2012;104:235–42.

    CAS  PubMed  Google Scholar 

  12. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38:167–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Debnath J, Gammoh N, Ryan KM Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 2023: 1-16.

  14. Mukha A, Kahya U, Dubrovska A. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy. 2021;17:3879–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhan Y, Zhang Z, Liu Y, Fang Y, Xie Y, Zheng Y, et al. NUPR1 contributes to radiation resistance by maintaining ROS homeostasis via AhR/CYP signal axis in hepatocellular carcinoma. BMC Med. 2022;20:365.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin S, Lee WC, Aust D, Pilarsky C, Cordes N. beta8 Integrin Mediates Pancreatic Cancer Cell Radiochemoresistance. Mol Cancer Res. 2019;17:2126–38.

    CAS  PubMed  Google Scholar 

  17. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023;24:167–85.

    CAS  PubMed  Google Scholar 

  18. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019;176:11–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. 2013;154:1285–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045.

    CAS  PubMed  Google Scholar 

  21. Fang Y, Zhan Y, Xie Y, Du S, Chen Y, Zeng Z, et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC. Hepatology. 2022;75:1386–401.

    CAS  PubMed  Google Scholar 

  22. Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 2018;68-69:435–51.

    CAS  PubMed  Google Scholar 

  23. Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppan D. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology. 2008;135:660–70.

    CAS  PubMed  Google Scholar 

  24. Cramer P. Organization and regulation of gene transcription. Nature. 2019;573:45–54.

    CAS  PubMed  Google Scholar 

  25. Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 1995;14:951–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R. SRF Co-factors Control the Balance between Cell Proliferation and Contractility. Mol Cell. 2016;64:1048–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nolte M, Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-beta. Trends Cell. Biol. 2020;30:49–59.

    CAS  PubMed  Google Scholar 

  28. Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14:247–58.

    CAS  PubMed  Google Scholar 

  29. Lauvrak SU, Hollas H, Doskeland AP, Aukrust I, Flatmark T, Vedeler A. Ubiquitinated annexin A2 is enriched in the cytoskeleton fraction. FEBS Lett. 2005;579:203–6.

    CAS  PubMed  Google Scholar 

  30. Zhao Q, Zhang K, Li Z, Zhang H, Fu F, Fu J, et al. High Migration and Invasion Ability of PGCCs and Their Daughter Cells Associated With the Nuclear Localization of S100A10 Modified by SUMOylation. Front Cell Dev Biol. 2021;9:696871.

    PubMed  PubMed Central  Google Scholar 

  31. Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, et al. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-kappaB positive feedback loop. J Cell Mol Med. 2019;23:6907–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, et al. Outcomes After Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J Clin Oncol. 2016;34:452–9.

    CAS  PubMed  Google Scholar 

  33. Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells. 2020;9:746.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao Y, Song X, Jiang W, Chen Y, Ning Z, Gu W, et al. MicroRNA-621 Acts as a Tumor Radiosensitizer by Directly Targeting SETDB1 in Hepatocellular Carcinoma. Mol Ther. 2019;27:355–64.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Zheng L, Ding Y, Li Q, Wang R, Liu T, et al. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2015;92:1132–40.

    CAS  PubMed  Google Scholar 

  36. Yu L, Sun Y, Li J, Wang Y, Zhu Y, Shi Y, et al. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res. 2017;36:110.

    PubMed  PubMed Central  Google Scholar 

  37. Sun J, Zhu Z, Li W, Shen M, Cao C, Sun Q, et al. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. J Exp Clin Cancer Res. 2020;39:222.

    PubMed  PubMed Central  Google Scholar 

  38. Mantoni TS, Lunardi S, Al-Assar O, Masamune A, Brunner TB. Pancreatic stellate cells radioprotect pancreatic cancer cells through beta1-integrin signaling. Cancer Res. 2011;71:3453–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin HK, Kim MS, Lee JK, Lee SS, Ji YH, Kim JI, et al. Combination effect of cetuximab with radiation in colorectal cancer cells. Tumori. 2010;96:713–20.

    CAS  PubMed  Google Scholar 

  40. Gurtner K, Deuse Y, Butof R, Schaal K, Eicheler W, Oertel R, et al. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. Radiother Oncol. 2011;99:323–30.

    CAS  PubMed  Google Scholar 

  41. Eke I, Schneider L, Forster C, Zips D, Kunz-Schughart LA, Cordes N. EGFR/JIP-4/JNK2 signaling attenuates cetuximab-mediated radiosensitization of squamous cell carcinoma cells. Cancer Res. 2013;73:297–306.

    CAS  PubMed  Google Scholar 

  42. Busk M, Pytela R, Sheppard D. Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem. 1992;267:5790–6.

    CAS  PubMed  Google Scholar 

  43. Breuss JM, Gallo J, DeLisser HM, Klimanskaya IV, Folkesson HG, Pittet JF, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci. 1995;108:2241–51.

    CAS  PubMed  Google Scholar 

  44. Li Z, Biswas S, Liang B, Zou X, Shan L, Li Y, et al. Integrin beta6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma. Sci. Rep. 2016;6:30081.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol. 2015;31:65–75.

    CAS  PubMed  Google Scholar 

  46. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    CAS  PubMed  Google Scholar 

  47. Antonioli M, Di Rienzo M, Piacentini M, Fimia GM. Emerging Mechanisms in Initiating and Terminating Autophagy. Trends Biochem Sci. 2017;42:28–41.

    CAS  PubMed  Google Scholar 

  48. Morozova K, Sridhar S, Zolla V, Clement CC, Scharf B, Verzani Z, et al. Annexin A2 promotes phagophore assembly by enhancing Atg16L(+) vesicle biogenesis and homotypic fusion. Nat Commun. 2015;6:5856.

    CAS  PubMed  Google Scholar 

  49. Ahmed N, Niu J, Dorahy DJ, Gu X, Andrews S, Meldrum CJ, et al. Direct integrin alphavbeta6-ERK binding: implications for tumour growth. Oncogene. 2002;21:1370–80.

    CAS  PubMed  Google Scholar 

  50. Wang J, Wu J, Hong J, Chen R, Xu K, Niu W, et al. PKC promotes the migration of colon cancer cells by regulating the internalization and recycling of integrin alphavbeta6. Cancer Lett. 2011;311:38–47.

    CAS  PubMed  Google Scholar 

  51. Gao H, Peng C, Liang B, Shahbaz M, Liu S, Wang B, et al. beta6 integrin induces the expression of metalloproteinase-3 and metalloproteinase-9 in colon cancer cells via ERK-ETS1 pathway. Cancer Lett. 2014;354:427–37.

    CAS  PubMed  Google Scholar 

  52. Sharrocks AD, Yang SH, Galanis A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci. 2000;25:448–53.

    CAS  PubMed  Google Scholar 

  53. Sharrocks AD. ERK2/p42 MAP kinase stimulates both autonomous and SRF-dependent DNA binding by Elk-1. FEBS Lett. 1995;368:77–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Min-shan Chen and Dr. Yao-jun Zhang, Department of Hepatobiliary Oncology, SYSUCC, for their help in collecting HCC samples. We thank the specimen donors at SYSUFAH and SYSUCC. The graphical abstract and working model were created with BioRender (http://biorender.com/).

Funding

The study was supported by the National Natural Science Foundation of Guangdong Province of China (No. 2022B1515020010) and the Young Scientists Fund of the National Natural Science Foundation of China (No. 82103771).

Author information

Authors and Affiliations

Contributions

JW and MXZ provided the study concept and design. YG, GYW and HY interpreted and analyzed the data. YG, GYW, HY and SPL performed the experiments. YG, GYW, YHT, XY, and YC collected the patients’ samples. YG, GYW, MXZ and JW wrote the manuscript. JW and MXZ supervised the study and reviewed the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Meixiao Zhan or Jian Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The study was conducted in accordance with the Declaration of Helsinki. The informed consent was obtained from all participants. For the use of clinical materials, the study was approved by the Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University (SYSUFAH) (Approval No. [2022]438) and the Ethics Committee of Sun Yat-sen University Cancer Center (SYSUCC) (Approval No. B2019-008-01). Approval No. L102012019060I was granted by the Institutional Animal Care and Use Committee of Sun Yat-sen University Cancer Center for all mouse care and experiments. All methods were performed in accordance with the relevant guidelines and regulations in the present study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wei, G., Yu, H. et al. Integrin β6/Annexin A2 axis triggers autophagy to orchestrate hepatocellular carcinoma radioresistance. Cell Death Differ 32, 689–701 (2025). https://doi.org/10.1038/s41418-024-01411-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-024-01411-5

This article is cited by

Search

Quick links