Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability

Abstract

Repair of double strand breaks (DSBs) by RNA-binding proteins (RBPs) is vital for ensuring genome integrity. DSB repair is accompanied by local transcriptional repression in the vicinity of transcriptionally active genes, but the mechanism by which RBPs regulate transcriptional regulation is unclear. Here, we demonstrated that RBP hnRNPA2B1 functions as a RNA polymerase-associated factor that stabilizes the transcription complex under physiological conditions. Following a DSB, hnRNPA2B1 is released from damaged chromatin, reducing the efficiency of RNAPII complex assembly, leading to local transcriptional repression. Mechanistically, SIRT6 deacetylates hnRNPA2B1 at K113/173 residues, enforcing its rapid detachment from DSBs. This process disrupts the integrity of the RNAPII complex on active chromatin, which is a pre-requisite for transient but complete repression of local transcription. Functionally, the overexpression of an acetylation mimic stabilizes the transcription complex and facilitates the functioning of the transcription machinery. hnRNPA2B1 acetylation status was negatively correlated with SIRT6 expression, and acetylation mimic enhanced radio-sensitivity in vivo. Our findings demonstrate that hnRNPA2B1 is crucial for transcriptional repression. We have uncovered the missing link between DSB repair and transcriptional regulation in genome stability maintenance, highlighting the potential of hnRNPA2B1 as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of hnRNPA2B1 as a potential transcriptional regulator of the DNA damage response.
Fig. 2: hnRNPA2B1 disassociates from RNA polymerase II complex and disrupts its integrity in response to DNA damage.
Fig. 3: Chromatin hnRNPA2B1 is deacetylated and released from DSB sites in response to DNA damage.
Fig. 4: SIRT6 interacts with, and deacetylates hnRNPA2B1 in response to DNA damage.
Fig. 5: hnRNPA2B1 deacetylation at K113/173 residues by SIRT6 is a pre-requisite for its chromatin dissociation.
Fig. 6: Deacetylation of hnRNPA2B1 by SIRT6 disrupts the integrity of the RNA polymerase II complex and suppresses transcriptional activity at DSB sites.
Fig. 7: Deacetylation of hnRNPA2B1 is beneficial for maintaining genome stability.

Similar content being viewed by others

Data availability

Any additional information and materials in this paper are available from the corresponding author upon reasonable request.

References

  1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Murray JM, Carr AM. Integrating DNA damage repair with the cell cycle. Curr Opin Cell Biol. 2018;52:120–5.

    Article  CAS  PubMed  Google Scholar 

  3. Aguilera A, García-Muse T. Causes of genome instability. Ann Rev Genet. 2013;47:1–32.

    Article  CAS  PubMed  Google Scholar 

  4. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhang H, Lu W, Zhou Y, Jiang Y. Advances in DNA damage induced by environmental chemical carcinogens. Genome Instab Dis. 2022;3:317–30.

    Article  CAS  Google Scholar 

  6. Zhang J, Chen F, Tang M, Xu W, Tian Y, Liu Z, et al. The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability. Cell Rep. 2024;43:113779.

    Article  CAS  PubMed  Google Scholar 

  7. Tiwari V, Wilson DM. 3rd. DNA damage and associated DNA repair defects in disease and premature aging. Am J Hum Genet. 2019;105:237–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vázquez-García I, Uhlitz F, Ceglia N, Lim JLP, Wu M, Mohibullah N, et al. Ovarian cancer mutational processes drive site-specific immune evasion. Nature. 2022;612:778–86.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16:35–42.

    Article  CAS  PubMed  Google Scholar 

  10. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harbor Perspect Med. 2015;5:a025130.

    Article  Google Scholar 

  11. Zhang J, Chen F, Tian Y, Xu W, Zhu Q, Li Z, et al. PARylated PDHE1α generates acetyl-CoA for local chromatin acetylation and DNA damage repair. Nat Struct Mol Biol. 2023;30:1719–34.

    Article  CAS  PubMed  Google Scholar 

  12. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  13. Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol. 2019;20:766–84.

    Article  CAS  PubMed  Google Scholar 

  14. Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair. 2021;106:103192.

    Article  CAS  PubMed  Google Scholar 

  15. Meisenberg C, Pinder SI, Hopkins SR, Wooller SK, Benstead-Hume G, Pearl FMG, et al. Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability. Mol Cell. 2019;73:212–23.e217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Awwad SW, Abu-Zhayia ER, Guttmann-Raviv N, Ayoub NNELF-. E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. EMBO Rep. 2017;18:745–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. Wiley Interdiscip Rev RNA. 2021;12:e1612.

    Article  CAS  PubMed  Google Scholar 

  19. Klaric JA, Wüst S, Panier S. New faces of old friends: emerging new roles of RNA-binding proteins in the DNA double-strand break response. Front Mol Biosci. 2021;8:668821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Polo SE, Blackford AN, Chapman JR, Baskcomb L, Gravel S, Rusch A, et al. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol Cell. 2012;45:505–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yang YG, Qi Y. RNA-directed repair of DNA double-strand breaks. DNA Repair. 2015;32:82–85.

    Article  CAS  PubMed  Google Scholar 

  22. Xu H, Li P, Wang X, Zhuang H, Hua ZC. Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol. 2022;221:1077–92.

    Article  CAS  PubMed  Google Scholar 

  23. Chu M, Wan H, Zhang X. Requirement of splicing factor hnRNP A2B1 for tumorigenesis of melanoma stem cells. Stem Cell Res Therapy. 2021;12:90.

    Article  CAS  Google Scholar 

  24. Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15:313–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  Google Scholar 

  26. Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. 2019;365:eaav0758.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu S, Hou J, Gao H, Hu Q, Kloeber JA, Huang J, et al. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses. Mol Cell. 2023;83:539–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Amaya J, Ryan VH, Fawzi NL. The SH3 domain of Fyn kinase interacts with and induces liquid-liquid phase separation of the low-complexity domain of hnRNPA2. J Biol Chem. 2018;293:19522–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell. 2010;21:3578–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Guha M, Pan H, Fang JK, Avadhani NG. Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell. 2009;20:4107–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ma KW, Au SW, Waye MM. Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct. 2009;27:228–37.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Liang L, Dong Q, Huan L, He J, Li B, et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics. 2018;8:2814–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Xuan Y, Wang J, Ban L, Lu JJ, Yi C, Li Z, et al. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers. Mol Oncol. 2016;10:610–24.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao K, Zhou Z. Post-translational modifications of nuclear sirtuins. Genome Instab Dis. 2020;1:34–45.

    Article  Google Scholar 

  35. North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5:224.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Chen F, He X, Xu W, Zhou L, Liu Q, Chen W, et al. Chromatin lysine acylation: on the path to chromatin homeostasis and genome integrity. Cancer Sci. 2024;2024. https://doi.org/10.1111/cas.16321.

  37. Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu W-G. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair. 2021;107:103206.

    Article  CAS  PubMed  Google Scholar 

  38. Chen B, Zang W, Wang J, Huang Y, He Y, Yan L, et al. The chemical biology of sirtuins. Chem Soc Rev. 2015;44:5246–64.

    Article  CAS  PubMed  Google Scholar 

  39. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Geng A, Tang H, Huang J, Qian Z, Qin N, Yao Y, et al. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Res. 2020;48:9181–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–29.

    Article  CAS  PubMed  Google Scholar 

  42. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 2013;51:454–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hou T, Cao Z, Zhang J, Tang M, Tian Y, Li Y, et al. SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Res. 2020;48:2982–3000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Dong C, West KL, Tan XY, Li J, Ishibashi T, Yu CH, et al. Screen identifies DYRK1B network as mediator of transcription repression on damaged chromatin. Proc Natl Acad Sci USA. 2020;117:17019–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell. 2010;141:970–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jao CY, Salic A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci USA. 2008;105:15779–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Moquin DM, Genois MM, Zhang JM, Ouyang J, Yadav T, Buisson R, et al. Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev. 2019;33:75–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Huang T, Zhu G, Chen F. The potential impact of HNRNPA2B1 on human cancers prognosis and immune microenvironment. J Immunol Res. 2024;2024:5515307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L. Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet. 2018;64:971–83.

    Article  CAS  PubMed  Google Scholar 

  50. Wickramasinghe VO, Venkitaraman AR. RNA processing and genome stability: cause and consequence. Mol Cell. 2016;61:496–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gnan S, Liu Y, Spagnuolo M, Chen C-L. The impact of transcription-mediated replication stress on genome instability and human disease. Genome Instab Dis. 2020;1:207–34.

    Article  Google Scholar 

  52. Calderwood SK. A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription. 2016;7:75–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Plosky BS. Regulating transcription traffic around DSBs. Mol Cell. 2015;58:391–2.

    Article  CAS  PubMed  Google Scholar 

  54. Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol. 2022;18:70–80.

    Article  CAS  PubMed  Google Scholar 

  55. Bhowmick R, Mehta KPM, Lerdrup M, Cortez D. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability. Mol Cell. 2023;83:2357–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Caron P, van der Linden J, van Attikum H. Bon voyage: a transcriptional journey around DNA breaks. DNA Repair. 2019;82:102686.

    Article  CAS  PubMed  Google Scholar 

  57. Nakazawa Y, Hara Y, Oka Y, Komine O, van den Heuvel D, Guo C, et al. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell. 2020;180:1228–44.e1224.

    Article  CAS  PubMed  Google Scholar 

  58. Tufegdžić Vidaković A, Mitter R, Kelly GP, Neumann M, Harreman M, Rodríguez-Martínez M, et al. Regulation of the RNAPII pool is integral to the DNA damage response. Cell. 2020;180:1245–61.e1221.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lu Y, Wang X, Gu Q, Wang J, Sui Y, Wu J, et al. Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Discov. 2022;8:337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chen Z, Chen X, Lei T, Gu Y, Gu J, Huang J, et al. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol Ther J Am Soc Gene Ther. 2020;28:1479–93.

    Article  CAS  Google Scholar 

  61. Zhou B, Lu D, Wang A, Cui J, Zhang L, Li J, et al. Endoplasmic reticulum stress promotes sorafenib resistance via miR-188-5p/hnRNPA2B1-mediated upregulation of PKM2 in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2021;26:1051–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Meng LD, Shi GD, Ge WL, Huang XM, Chen Q, Yuan H, et al. Linc01232 promotes the metastasis of pancreatic cancer by suppressing the ubiquitin-mediated degradation of HNRNPA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway. Cancer Lett. 2020;494:107–20.

    Article  CAS  PubMed  Google Scholar 

  63. Dai S, Zhang J, Huang S, Lou B, Fang B, Ye T, et al. HNRNPA2B1 regulates the epithelial-mesenchymal transition in pancreatic cancer cells through the ERK/snail signalling pathway. Cancer Cell Int. 2017;17:12.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 2021;228:107922.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 2018;53:156–67.

    Article  CAS  PubMed  Google Scholar 

  66. Patterson-Fortin J, Bose A, Tsai WC, Grochala C, Nguyen H, Zhou J, et al. Targeting DNA repair with combined inhibition of NHEJ and MMEJ induces synthetic lethality in TP53-mutant cancers. Cancer Res. 2022;82:3815–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Qiu L, Xu W, Lu X, Chen F, Chen Y, Tian Y, et al. The HDAC6-RNF168 axis regulates H2A/H2A.X ubiquitination to enable double-strand break repair. Nucleic Acids Res. 2023;51:9166–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Li Z, Xu W, Chen F, Zhang J, Zhu W-G. BET inhibitors enhance the anti-cancer effect of etoposide by suppressing the MRN-ATM axis in the DNA damage response. Genes Dis. 2022;11:19–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hou T, Tian Y, Cao Z, Zhang J, Feng T, Tao W, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol Cell. 2022;82:4099–115.e4099.

    Article  CAS  PubMed  Google Scholar 

  70. Tian Y, Feng T, Hou T, Zhu W-G. Protocol to purify the histone deacetylase SIRT6 and assess its activity in vitro. STAR Protoc. 2023;4:102206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [32090030, 32090033, 82430096, 82472781 and 82002986]; the Guangdong Basic and Applied Basic Research Foundation (2021A1515011126); the Shenzhen Municipal Commission of Science and Technology Innovation [JCYJ20220818100015032, JCYJ20220818100016034, RCYX20210706092040047]; the Shenzhen Medical Research Fund [A2303025 and B2302010]; the Shenzhen University 2035 Program for Excellent Research and Shenzhen University Startup Grant for Youth, and the Program for Youzuzhikeyan of Shenzhen University. The authors would like to thank Dr Roger Greenberg (University of Pennsylvania, USA) for providing the U2OS-DSB reporter cells, and Dr Jessica Tamanini of ETediting, UK for English language editing prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

JZ and WGZ contributed to the design of the research, conceived the study, guided the research and revised the manuscript; FC, WCX, and JZ wrote the manuscript; FC, WCX, MT, YXS, and JZ performed the experimental study and analyzed data; XKH and QL helped the mice maintenance; MT provided the clinical tissue samples; LMZ analyzed the clinical samples; YT, QZ, and XPL discussed the study and provided suggestions.

Corresponding authors

Correspondence to Jun Zhang or Wei-Guo Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. Studies using human specimens were approved by the Clinical Research Ethics Committee of Shenzhen University. The patients provided written informed consent to the use of their resected tissues for research purposes. All mouse experiments were approved by Shenzhen University Animal Care and Use Committee and were conducted in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Xu, W., Tang, M. et al. hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability. Cell Death Differ 32, 382–396 (2025). https://doi.org/10.1038/s41418-024-01412-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-024-01412-4

This article is cited by

Search

Quick links