Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons

Subjects

Abstract

The dura sinus-resident immune cells can influence the process of central neural system (CNS) diseases by communicating with central nerve cells. In clinical, Tregs are also frequently impaired in depression. However, the significance of this relationship remains unknown. In the present study, we found a significant increase in dural Treg populations in mouse models of depression, whereas depleting them by neutralizing antibodies injection could exacerbate depressive phenotypes. Through RNA sequencing, we identified that the antidepressant effects of dural Tregs are at least in part through the production of amphiregulin, increasing the expression of its receptor EGFR in medial prefrontal cortex (mPFC) pyramidal neurons. Furthermore, dural Tregs expressed high levels of ST2, and their expansion in depressed mice depended on astrocyte-derived IL33 secretion. Our study shows that dural Treg signaling can be enhanced by treatment with fluoxetine, highlighting that dural Tregs can be utilized as a potential target cell in major depressive disorder (MDD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CSDS stimulation induced significant infiltration of Tregs in the dura mater of mice.
Fig. 2: Single-cell RNA sequencing characterizes CSDS-induced transcriptome changes in dural immune cells.
Fig. 3: Depressive stress enhances dura mater infiltration of Tregs by activating ST2 signaling.
Fig. 4: IL33/ST2 signaling may be involved in the increase of dural Tregs after CSDS stressing.
Fig. 5: IL33 secreted by brain astrocytes induced by depressive stress may be involved in the increase of dural Tregs.
Fig. 6: Depletion of dural Tregs exacerbates CSDS-induced depressive behaviors.
Fig. 7: AREG secreted by dural Tregs may regulate depressive behaviors by influencing the activity of mPFC neurons.
Fig. 8: Dural Tregs regulate depressive behaviors by activating EGFR signaling in mPFC pyramidal neurons.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The datasets used in the current study are available on the Sequence Read Archive (SRA) repository (No. PRJNA1177115; https://submit.ncbi.nlm.nih.gov/subs/sra/). Additional data are available from authors upon request.

References

  1. Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, et al. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol. 2020;5:eabb5590.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, et al. Meningeal gammadelta T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol. 2020;21:1421–29.

    CAS  PubMed  Google Scholar 

  3. Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, et al. Meningeal γδ T cell–derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol. 2019;4:eaay5199.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gate D, Tapp E, Leventhal O, Shahid M, Nonninger TJ, Yang AC, et al. CD4(+) T cells contribute to neurodegeneration in Lewy body dementia. Science. 2021;374:868–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karikari AA, McFleder RL, Ribechini E, Blum R, Bruttel V, Knorr S, et al. Neurodegeneration by alpha-synuclein-specific T cells in AAV-A53T-alpha-synuclein Parkinson’s disease mice. Brain Behav Immun. 2022;101:194–210.

    CAS  PubMed  Google Scholar 

  6. Sanmarco LM, Wheeler MA, Gutiérrez-Vázquez C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, et al. Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature. 2021;590:473–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynall ME, Turner L, Bhatti J, Cavanagh J, de Boer P, Mondelli V, et al. Peripheral blood cell-stratified subgroups of inflamed depression. Biol Psychiatry. 2020;88:185–96.

    CAS  PubMed  Google Scholar 

  8. Beurel E, Harrington LE, Jope RS. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry. 2013;73:622–30.

    CAS  PubMed  Google Scholar 

  9. Medina-Rodriguez EM, Madorma D, O’Connor G, Mason BL, Han D, Deo SK, et al. Identification of a signaling mechanism by which the microbiome regulates Th17 cell-mediated depressive-like behaviors in mice. Am J Psychiatry. 2020;177:974–90.

    PubMed  PubMed Central  Google Scholar 

  10. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.

    CAS  PubMed  Google Scholar 

  11. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity. 2021;54:1527–42.e1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, et al. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun. 2021;91:350–68.

    CAS  PubMed  Google Scholar 

  13. Westfall S, Caracci F, Estill M, Frolinger T, Shen L, Pasinetti GM. Chronic stress-induced depression and anxiety priming modulated by gut-brain-axis immunity. Front Immunol. 2021;12:670500.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Song L, Sen S, Sun Y, Zhou J, Mo L, He Y. Ketamine inhalation ameliorates ovalbumin-induced murine asthma by suppressing the epithelial-mesenchymal transition. Med Sci Monit. 2016;22:2471–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiese T, Dennstädt F, Hollmann C, Stonawski S, Wurst C, Fink J, et al. Inhibition of acid sphingomyelinase increases regulatory T cells in humans. Brain Commun. 2021;3:fcab020.

    PubMed  PubMed Central  Google Scholar 

  16. Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, Hygino J, et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4(+) T-cell subsets in multiple sclerosis patients. Eur J Immunol. 2018;48:1376–88.

    CAS  PubMed  Google Scholar 

  17. Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184:1000–16.e1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grosse L, Carvalho LA, Birkenhager TK, Hoogendijk WJ, Kushner SA, Drexhage HA, et al. Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology. 2016;233:1679–88.

    CAS  PubMed  Google Scholar 

  19. Mohd Ashari NS, Mohamed Sanusi SNF, Mohd Yasin MA, Che Hussin CM, Wong KK, Shafei MN. Major depressive disorder patients on antidepressant treatments display higher number of regulatory T cells. Malays J Pathol. 2019;41:169–76.

    CAS  PubMed  Google Scholar 

  20. Niu C, Yu J, Zou T, Lu Y, Deng L, Yun H, et al. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep. 2022;41:111592.

    CAS  PubMed  Google Scholar 

  21. Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, Cho JL, et al. Interleukin-33 activates regulatory T cells to suppress innate gammadelta T cell responses in the lung. Nat Immunol. 2020;21:1371–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pandolfo G, Genovese G, Casciaro M, Muscatello MRA, Bruno A, Pioggia G, et al. IL-33 in mental disorders. Medicina. 2021;57:315.

    PubMed  PubMed Central  Google Scholar 

  23. Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci. 2021;44:837–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Mo JW, Wang X, An Z, Zhang S, Zhang CY, et al. Astrocyte dysfunction drives abnormal resting-state functional connectivity in depression. Sci Adv. 2022;8:eabo2098.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.

    CAS  PubMed  Google Scholar 

  26. Badr M, McFleder RL, Wu J, Knorr S, Koprich JB, Hünig T, et al. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-alpha-synuclein Parkinson’s disease mice. J Neuroinflammation. 2022;19:319.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Romano R, Bucci C. Role of EGFR in the nervous system. Cells. 2020;9:1887.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin S, Huang L, Luo ZC, Li X, Jin SY, Du ZJ, et al. The ATP level in the medial prefrontal cortex regulates depressive-like behavior via the medial prefrontal cortex-lateral habenula pathway. Biol Psychiatry. 2022;92:179–92.

    CAS  PubMed  Google Scholar 

  29. Patent: Ji MJ, l. R, Ni YY, inventors; Nanjing ZHISHI Law Firm, assignee. Methods for preparation and application of polypeptide. CN patent CN112707959B. 2022.

  30. Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol. 2018;9:883.

    PubMed  PubMed Central  Google Scholar 

  31. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Fu WY, Cheung K, Hung KW, Chen C, Geng H, et al. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci USA. 2021;118:e2020810118.

    CAS  PubMed  Google Scholar 

  33. Liu Y, Song N, Yao H, Jiang S, Wang Y, Zheng Y, et al. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression. J Neuroinflammation. 2022;19:240.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo S, Luo Y. Brain Foxp3+ regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol. 2020;81:106027.

    CAS  PubMed  Google Scholar 

  35. Zhan L, Zheng L, Hosoi T, Okuma Y, Nomura Y. Stress-induced neuroprotective effects of epiregulin and amphiregulin. PLoS One. 2015;10:e0118280.

    PubMed  PubMed Central  Google Scholar 

  36. Steponaitis G, Kazlauskas A, Skiriute D, Vaitkiene P, Skauminas K, Tamasauskas A. Significance of amphiregulin (AREG) for the outcome of low and high grade astrocytoma patients. J Cancer. 2019;10:1479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang J, Cheng X, Qi J, Xie B, Zhao X, Zheng K, et al. EGF enhances oligodendrogenesis from glial progenitor cells. Front Mol Neurosci. 2017;10:106.

    PubMed  PubMed Central  Google Scholar 

  38. Liu B, Neufeld AH. Activation of epidermal growth factor receptors directs astrocytes to organize in a network surrounding axons in the developing rat optic nerve. Dev Biol. 2004;273:297–307.

    CAS  PubMed  Google Scholar 

  39. Hu Q, Zhang L, Wen J, Wang S, Li M, Feng R, et al. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells. 2010;28:279–86.

    CAS  PubMed  Google Scholar 

  40. Sarantis P, Trifylli EM, Koustas E, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. Immune microenvironment and immunotherapeutic management in virus-associated digestive system tumors. Int J Mol Sci. 2022;23:13612.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu Z, Zhang X, Chang H, Kong Y, Ni Y, Liu R, et al. Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal Treg cells. Nat Neurosci. 2021;24:818–30.

    CAS  PubMed  Google Scholar 

  43. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967.

    CAS  PubMed  Google Scholar 

  44. Calahorra L, Camacho-Toledano C, Serrano-Regal MP, Ortega MC, Clemente D. Regulatory cells in multiple sclerosis: from blood to brain. Biomedicines. 2022;10:335.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ellul P, Mariotti-Ferrandiz E, Leboyer M, Klatzmann D. Regulatory T cells as supporters of psychoimmune resilience: toward immunotherapy of major depressive disorder. Front Neurol. 2018;9:167.

    PubMed  PubMed Central  Google Scholar 

  46. Whibley N, Tucci A, Powrie F. Regulatory T cell adaptation in the intestine and skin. Nat Immunol. 2019;20:386–96.

    CAS  PubMed  Google Scholar 

  47. Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, et al. Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci Immunol. 2020;5:eabc7191.

    PubMed  PubMed Central  Google Scholar 

  48. Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N, Ferdinand J, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature. 2020;587:472–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022;27:1920–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr. 2020;11:709–23.

    PubMed  Google Scholar 

  51. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.

    CAS  PubMed  Google Scholar 

  52. Foley ÉM, Parkinson JT, Mitchell RE, Turner L, Khandaker GM. Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol Psychiatry 2023;28:1004–19.

    CAS  PubMed  Google Scholar 

  53. Li Z, Vidjro OE, Guo G, Du Y, Zhou Y, Xie Q, et al. NLRP3 deficiency decreases alcohol intake controlling anxiety-like behavior via modification of glutamatergic transmission in corticostriatal circuits. J Neuroinflammation. 2022;19:308.

Download references

Funding

National Key R&D Program of China (No. 2021ZD0202903). National Natural Science Foundation of China (Nos. 82373851, 81922066, 82173797, 81991523).

Author information

Authors and Affiliations

Contributions

Experimental operation: Hang Yao, Yuepin Wang, You Xue, Siyuan Jiang, Xin Sun. Data acquisition: Hang Yao, Yang Liu. Figure drafting: Hang Yao, Yang Liu. Manuscript writing: Hang Yao, Yang Liu. Single-cell sequencing analysis guidance: Zhipeng Xu, Minjun Ji. Technical supporting: Jianhua Ding. Study designing and manuscript revising: Ming Lu, Gang Hu.

Corresponding authors

Correspondence to Gang Hu or Ming Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Liu, Y., Wang, Y. et al. Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons. Cell Death Differ 32, 926–943 (2025). https://doi.org/10.1038/s41418-024-01421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-024-01421-3

Search

Quick links