Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase A regulates ferroptosis by controlling GPX4 m6A modification through phosphorylation of ALKBH5

Abstract

GPX4-dependent ferroptosis has emerged as a therapeutic strategy for cancer treatment. Here, we demonstrated that protein kinase A (PKA) participates in the regulation of ferroptosis by controlling the m6A modification of GPX4 in an ALKBH5-dependent manner. Notably, we identified ALKBH5, an m6A demethylase, as a novel target of PKA, which drives phosphorylation-dependent degradation of ALKBH5 protein. Moreover, the deletion of ALKBH5 represses ferroptotic cell death by maintaining GPX4 m6A modification and stability. Thus, by regulating ALKBH5-dependent GPX4 stability, PKA acts as a key regulator of ferroptosis. Our study unveils the involvement of PKA in m6A modification, which could control GPX4-dependent ferroptosis and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PKA suppresses ferroptosis.
Fig. 2: GPX4 is a critical regulator for PKA-dependent ferroptosis.
Fig. 3: ALKBH5 is a direct phosphorylation substrate of PKA.
Fig. 4: PKA regulates ALKBH5 stability and m6A modification.
Fig. 5: ALKBH5 regulates GPX4-dependent ferroptosis.
Fig. 6: PKA-ALKBH5-GPX4 regulates ferroptosis.
Fig. 7: PKA-ALKBH5-GPX4 regulates tumor growth.

Similar content being viewed by others

Data availability

All data supporting the conclusion in the paper are present in the paper and the supplementary files.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular Cell. 2022;82:2215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.

    Article  CAS  PubMed  Google Scholar 

  7. Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends in Cell Biology. 2020;30:478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–48.

    Article  CAS  PubMed  Google Scholar 

  11. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172:409–422 e421.

    Article  CAS  PubMed  Google Scholar 

  12. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  PubMed  Google Scholar 

  13. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, et al. FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018;14:507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10:1617.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu K, Yan M, Liu T, Wang Z, Duan Y, Xia Y, et al. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat Cell Biol. 2023;25:714–25.

    Article  CAS  PubMed  Google Scholar 

  17. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol. 2012;13:646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tasken K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev. 2004;84:137–67.

    Article  CAS  PubMed  Google Scholar 

  20. Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature. 1996;382:622–6.

    Article  CAS  PubMed  Google Scholar 

  21. Folkmanaite M, Zaccolo M. Phase separation of protein kinase A: a new paradigm in cardiac regulation? Nat Rev Cardiol. 2024;21:523.

  22. Zhang JZ, Lu T-W, Stolerman LM, Tenner B, Yang JR, Zhang J-F, et al. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell. 2020;182:1531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta. 2013;1834:1271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. Galphas-protein kinase A (PKA) pathway signalopathies: the emerging genetic landscape and therapeutic potential of human diseases driven by aberrant galphas-PKA signaling. Pharmacol Rev. 2021;73:155–97.

    Article  CAS  PubMed  Google Scholar 

  25. Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, et al. Inactivation of a Galpha(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol. 2015;17:793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  28. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  29. Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol. 2023;20:507–26.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X, Nedvetsky P, Stanchi F, Vion AC, Popp O, Zühlke K, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. Elife. 2019;8:e46380.

  32. Song H, Liu D, Wang L, Liu K, Chen C, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Molecular Cancer. 2022;21:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye F, Wu J, Zhang F. METTL16 epigenetically enhances GPX4 expression via m6A modification to promote breast cancer progression by inhibiting ferroptosis. Biochem Biophys Res Commun. 2023;638:1–6.

    Article  CAS  PubMed  Google Scholar 

  34. Sapio L, Di Maiolo F, Illiano M, Esposito A, Chiosi E, Spina A, et al. Targeting protein kinase A in cancer therapy: an update. EXCLI J. 2014;13:843–55.

    PubMed  PubMed Central  Google Scholar 

  35. Wu Y, Sun Y, Xu B, Yang M, Wang X, Zhao X. SCARNA10 regulates p53 acetylation-dependent transcriptional activity. Biochem Biophys Res Commun. 2023;669:38–45.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Zha M, Zhao X, Jiang P, Du W, Tam AY, et al. Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat Commun. 2013;4:1551.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pavel I Nedvetsky (University Hospital Münster, Germany) for kindly suggestion. This work was supported by the grants from National Natural Science Foundation of China (82200438, 82200271, 82311530688), the Guangdong Provincial Natural Science Foundation (2022A1515011946), the Guangdong Zhujiang Talent Program (0920220203), Shenzhen Key Laboratory (ZDSYS20230626091402006) Shenzhen Clinical Research Center for Gastroenterology (LCYSSQ20220823091203008), Natural Science Funds of Zhejiang Province (LQ22H020010) and Leading Innovation and Entrepreneurship Team of Zhejiang Province (2023R01005).

Author information

Authors and Affiliations

Authors

Contributions

Conception and experimental design: XZ, YS, XW. Methodology and data acquisition: YS, XZ, JZ, XW. Analysis and interpretation of data: XZ, YS, JZ, YW, MH, HK, GL, HG, WG, YZ, MS, XW. Manuscript writing: XZ, YZ, MS, XW.

Corresponding authors

Correspondence to Xiaocheng Zhao, Yunjiao Zhang, Min Shang or Xingwu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments with animals were approved by the Animal Care and Use Committee (IACUC), Sun Yat-sen University (Approve number: SYSU-IACUC-2024-000478) and performed according to the relevant ethical guidelines and regulations. This research did not involve human subject study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Sun, Y., Zou, J. et al. Protein kinase A regulates ferroptosis by controlling GPX4 m6A modification through phosphorylation of ALKBH5. Cell Death Differ 32, 1058–1070 (2025). https://doi.org/10.1038/s41418-025-01453-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01453-3

Search

Quick links