Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP38 functions as an oncoprotein by downregulating the p53 pathway through deubiquitination and stabilization of MDM2

Abstract

Dysregulation of the MDM2-p53 pathway is a commonly observed phenomenon in cancer, where overexpression or amplification of MDM2 leads to increased degradation of p53. This results in reduced levels of p53, leading to the loss of its tumor-suppressive functions. The study focused on investigating the role of Ubiquitin-specific protease 38 (USP38) in cancer and its interaction with the MDM2-p53 axis. We revealed that USP38 positively correlates with MDM2 and negatively correlates with p53 expression. Mechanistically, USP38 directly binds to MDM2, functioning as a deubiquitinating enzyme (DUB) to stabilize MDM2 and suppress p53 expression. Knockout of USP38 hindered cancer cell proliferation, migration, and invasion, and enhanced apoptosis. Moreover, USP38 deficiency increased sensitivity to chemotherapy drugs and promoted ferroptosis in gastric and breast cancer cell lines. Importantly, these effects were found to be dependent on p53, as the downregulation of p53 reversed the phenotypic changes induced by USP38 knockout. These findings shed light on the oncogenic role of USP38 by modulating the MDM2-p53 axis, providing valuable insights into the molecular mechanisms of USP38 in cancer and potential therapeutic strategies for gastric and breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP38 specially interacts with MDM2, but not p53.
Fig. 2: USP38 modulates the stability of MDM2 and p53 by deubiquitinating MDM2, influencing cellular sensitivity to chemotherapy drugs.
Fig. 3: USP38 regulates cell growth and apoptosis.
Fig. 4: USP38 enhances the migration and invasion of carcinoma cells.
Fig. 5: USP38 is involved in regulating cellular ferroptosis.
Fig. 6: USP38 regulates cell phenotypes and ferroptosis in a p53 dependent manner.
Fig. 7: Expression and Prognostic Value of USP38 in STAD.

Similar content being viewed by others

Data availability

Information on experimental reagents and primer sequences can be found in the Supplementary Tables. All other data are available from the corresponding authors upon request.

References

  1. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303.

    Article  CAS  PubMed  Google Scholar 

  2. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003;13:49–58.

    Article  CAS  PubMed  Google Scholar 

  3. Marine JC, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010;17:93–102.

    Article  CAS  PubMed  Google Scholar 

  4. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002;416:648–53.

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004;13:879–86.

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. Embo j. 2007;26:976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, et al. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014;15:562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon SK, Saindane M, Baek KH. p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer. 2017;1868:404–11.

    Article  CAS  PubMed  Google Scholar 

  10. Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mol Cell Biol. 2017;9:45–52.

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin M, Zhao Z, Yang Z, Meng Q, Tan P, Xie W, et al. USP38 Inhibits Type I Interferon Signaling by Editing TBK1 Ubiquitination through NLRP4 Signalosome. Mol Cell. 2016;64:267–81.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Xue X. USP38 protein alleviates neuroinflammation of cerebral ischemia–reperfusion injury via KDM5B expression. Molecular Cellular Toxicology. 2021;17:465–73.

    Article  CAS  Google Scholar 

  15. Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, et al. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. Adv Sci (Weinh). 2020;7:2002680.

    Article  CAS  PubMed  Google Scholar 

  16. Wang R, Cai X, Li X, Li J, Liu X, Wang J, et al. USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling. J Biol Chem. 2024;300:105532.

    Article  CAS  PubMed  Google Scholar 

  17. Zhan W, Liao X, Liu J, Tian T, Yu L, Li R. USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3. Oncogenesis. 2020;9:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Z, Hu H, Fang D, Wang J, Zhao K. The deubiquitinase USP38 promotes cell proliferation through stabilizing c-Myc. Int J Biochem Cell Biol. 2021;137:106023.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Li Q, Hu D, Gao D, Wang W, Wu K, et al. USP38 Inhibits Zika Virus Infection by Removing Envelope Protein Ubiquitination. Viruses. 2021;13:2029.

  20. Yang Y, Yang C, Li T, Yu S, Gan T, Hu J, et al. The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Res. 2020;80:719–31.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Su F, Wang B, Liu L, Lu Y, Su H, et al. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene. 2024;43:1190–202.

    Article  CAS  PubMed  Google Scholar 

  22. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35:4200–2.

    Article  CAS  PubMed  Google Scholar 

  23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pratt EP, Owens JL, Hockerman GH, Hu CD. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells. Methods Mol Biol. 2016;1474:153–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ding L, Zhang Z, Zhao C, Chen L, Chen Z, Zhang J, et al. Ribosomal L1 domain-containing protein 1 coordinates with HDM2 to negatively regulate p53 in human colorectal Cancer cells. J Exp Clin Cancer Res. 2021;40:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doherty LM, Mills CE, Boswell SA, Liu X, Hoyt CT, Gyori B, et al. Integrating multi-omics data reveals function and therapeutic potential of deubiquitinating enzymes. Elife. 2022;11:e72879.

  27. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  CAS  PubMed  Google Scholar 

  31. Liu W, Zhang Q, Fang Y, Wang Y. The deubiquitinase USP38 affects cellular functions through interacting with LSD1. Biol Res. 2018;51:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Z, Shang Y, Xu R, Yan X, Wang X, Cai J, et al. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res. 2022;12:2686–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Zhang C, Wang J, Hu W, Feng Z. The Regulation of Ferroptosis by Tumor Suppressor p53 and its Pathway. Int J Mol Sci. 2020;21:8387.

  34. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was in part supported by the National Natural Science Foundation of China (No. 81872260, 82172938 to PZZ), the Shanghai Natural Science Foundation (No. 21ZR1450300 to XPL), the National Key Clinical Specialties-Pathology (No. YWP2023-001 to YYH).

Author information

Authors and Affiliations

Authors

Contributions

PZZ and XPL conceived the study. SYZ, XLL, RKL, ZTJ, CX performed the experiments and data analyses. PZZ, XPL, YYH analyzed and interpreted the data. PZZ and SYZ wrote the manuscript.

Corresponding authors

Correspondence to Yingyong Hou, Xiuping Liu or Pingzhao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

This study involved human subjects and animal experiments and was approved by the Ethics Review Committee of Fudan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Liu, X., Luo, R. et al. USP38 functions as an oncoprotein by downregulating the p53 pathway through deubiquitination and stabilization of MDM2. Cell Death Differ 32, 1128–1141 (2025). https://doi.org/10.1038/s41418-025-01462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01462-2

Search

Quick links