Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CSTF2-impeded innate αβ T cell infiltration and activation exacerbate immune evasion of pancreatic cancer

Abstract

Alternative cleavage and polyadenylation (APA) have gained increasing attention in cancer biology, yet its role in modulating anti-tumor immune response remains largely unexplored. Here, we identify the cleavage stimulation factor 2 (CSTF2), an APA-related gene, as a pivotal suppressor of anti-tumor immunity in pancreatic ductal adenocarcinoma (PDAC). CSTF2 promotes tumor development by inhibiting the infiltration and cytotoxic immune cell recruitment function of TCRαβ+CD4CD8NK1.1 innate αβ T (iαβT) cells. Mechanistically, CSTF2 diminishes CXCL10 expression by promoting PolyA polymerase alpha (PAPα) binding to the 3’ untranslated regions of CXCL10 RNA, resulting in shortened PolyA tails and compromised RNA stability. Furthermore, we identify Forsythoside B, a selective inhibitor targeting the RNA recognition motif of CSTF2, can effectively activate anti-tumor immunity and overcome resistance to immune checkpoint blockade (ICB) therapy. Collectively, our findings unveil CSTF2 as a promising therapeutic target for sensitizing PDAC to ICB therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpressed CSTF2 in PDAC promoted poor prognosis dependent on immune.
Fig. 2: CSTF2 inhibits chemotaxis of CD8+ T, NK and iαβT cells to PDAC.
Fig. 3: CSTF2 inhibits recruitment of immune cells through down-regulating CXCL10.
Fig. 4: iαβT cells enhance the chemotaxis of cytotoxic CD8+ T and NK cells through CCL5.
Fig. 5: CSTF2 promotes PAPα adding shorter PolyA tails on CXCL10 pre-RNA.
Fig. 6: Targeting CSTF2 to enhance anti-tumor immunity sensitizes PDAC to the clinical ICB treatment.

Similar content being viewed by others

Data availability

The bulk RNA sequence data from 65 PDAC patients have been deposited in the Genome Sequence Archive in BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences http://bigd.big.ac.cn/ under restricted access: HRA000095. The data of Single-cell RNA-seq in this study have been deposited at Genome Sequence Archive (GSA) with accession numbers: GSE271287. The original contributions presented in the study are included in the article or the supplementary material.

References

  1. Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20:599–614.

    CAS  PubMed  Google Scholar 

  2. Xiong M, Chen L, Zhou L, Ding Y, Kazobinka G, Chen Z, et al. NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation. Theranostics. 2019;9:7156–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. 2014;510:412–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu Z, Jia X, de la Cruz L, Su XC, Marzolf B, Troisch P, et al. Memory T cell RNA rearrangement programmed by heterogeneous nuclear ribonucleoprotein hnRNPLL. Immunity. 2008;29:863–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin W, Kurosawa K, Murayama A, Kagaya E, Ohta K. B-cell display-based one-step method to generate chimeric human IgG monoclonal antibodies. Nucleic Acids Res. 2011;39:e14.

    PubMed  Google Scholar 

  6. Chen X, Zhang JX, Luo JH, Wu S, Yuan GJ, Ma NF, et al. CSTF2-induced shortening of the RAC1 3’UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res. 2018;78:5848–62.

    CAS  PubMed  Google Scholar 

  7. Xu Y, Yuan F, Sun Q, Zhao L, Hong Y, Tong S, et al. The RNA-binding protein CSTF2 regulates BAD to inhibit apoptosis in glioblastoma. Int J Biol Macromol. 2023;226:915–26.

    CAS  PubMed  Google Scholar 

  8. Akman HB, Oyken M, Tuncer T, Can T, Erson-Bensan AE. 3’UTR shortening and EGF signaling: implications for breast cancer. Hum Mol Genet. 2015;24:6910–20.

    CAS  PubMed  Google Scholar 

  9. Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int J Mol Sci. 2017;18:1338.

  10. Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol. 2022;13:961805.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, et al. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr). 2023;46:17–48.

    CAS  PubMed  Google Scholar 

  12. Wu Z, Zheng Y, Sheng J, Han Y, Yang Y, Pan H, et al. CD3(+)CD4(-)CD8(-) (Double-Negative) T Cells in inflammation, immune disorders and cancer. Front Immunol. 2022;13:816005.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Hu P, Wu G, Zhou H. Antipancreatic cancer effect of DNT cells and the underlying mechanism. Pancreatology. 2019;19:105–13.

    CAS  PubMed  Google Scholar 

  14. Hundeyin M, Kurz E, Mishra A, Rossi JAK, Liudahl SM, Leis KR, et al. Innate alphabeta T cells mediate antitumor immunity by orchestrating immunogenic macrophage programming. Cancer Discov. 2019;9:1288–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity. 2018;49:178–93.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao J, Ly D, Dervovic D, Fang L, Lee JB, Kang H, et al. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15. J Immunother Cancer. 2019;7:17.

    PubMed  PubMed Central  Google Scholar 

  17. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018;19:1112–25.

    CAS  PubMed  Google Scholar 

  19. Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 2019;35:559–72.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lv J, Wei Y, Yin JH, Chen YP, Zhou GQ, Wei C, et al. The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat Med. 2023;29:1424–36.

    CAS  PubMed  Google Scholar 

  21. Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, et al. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun. 2017;8:14053.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, et al. gammadelta T Cells support pancreatic oncogenesis by restraining alphabeta T Cell activation. Cell. 2016;166:1485–99.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537:539–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oveland E, Karlsen TV, Haslene-Hox H, Semaeva E, Janaczyk B, Tenstad O, et al. Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1. J Proteome Res. 2012;11:5338–49.

    CAS  PubMed  Google Scholar 

  25. Wang Y, Luu LDW, Liu S, Zhu X, Huang S, Li F, et al. Single-cell transcriptomic analysis reveals a systemic immune dysregulation in COVID-19-associated pediatric encephalopathy. Signal Transduct Target Ther. 2023;8:398.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Chen H, Liu W, Yan H, Zhang Y, Cheung AHK, et al. MCM6 is a critical transcriptional target of YAP to promote gastric tumorigenesis and serves as a therapeutic target. Theranostics. 2022;12:6509–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, et al. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature. 2008;451:1013–7.

    CAS  PubMed  Google Scholar 

  28. Shao M, Lu T, Zhang C, Zhang YZ, Kong SH, Shi DL. Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci USA. 2020;117:7245–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Z, Luo Z, Zhang D, Li H, Liu X, Zhu K, et al. TIGER: A web portal of tumor immunotherapy gene expression resource. Genomics Proteomics Bioinformatics. 2023;21:337–48.

    PubMed  Google Scholar 

  30. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    PubMed  Google Scholar 

  31. Koferle A, Schlattl A, Hormann A, Thatikonda V, Popa A, Spreitzer F, et al. Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep. 2022;39:110636.

    PubMed  Google Scholar 

  32. Liu J, Guan X, Ma X. Interferon regulatory factor 1 is an essential and direct transcriptional activator for interferon γ-induced RANTES/CCl5 expression in macrophages. J Biol Chem. 2005;280:24347–55.

    CAS  PubMed  Google Scholar 

  33. Zeng Z, Veitch M, Kelly GA, Tuong ZK, Cruz JG, Frazer IH, et al. IFN-γ critically enables the intratumoural infiltration of CXCR3(+) CD8(+) T Cells to drive squamous cell carcinoma regression. Cancers (Basel) 2021;13:2131.

  34. Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022;22:158–72.

    CAS  PubMed  Google Scholar 

  35. Yao C, Biesinger J, Wan J, Weng L, Xing Y, Xie X, et al. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci USA. 2012;109:18773–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Laishram RS. Poly(A) polymerase (PAP) diversity in gene expression-star-PAP vs canonical PAP. FEBS Lett. 2014;588:2185–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li W, Laishram RS, Ji Z, Barlow CA, Tian B, Anderson RA. Star-PAP control of BIK expression and apoptosis is regulated by nuclear PIPKIα and PKCδ signaling. Mol Cell. 2012;45:25–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kandala DT, Mohan N, A V, A PS, G R, Laishram RS. CstF-64 and 3’-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα. Nucleic Acids Res. 2016;44:811–23.

    CAS  PubMed  Google Scholar 

  39. Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. 2022;23:93–106.

    CAS  PubMed  Google Scholar 

  40. Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A, et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: A Phase Ib study. Oncologist. 2020;25:e808–e15.

    CAS  PubMed  Google Scholar 

  41. O’Reilly EM, Oh DY, Dhani N, Renouf DJ, Lee MA, Sun W, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 2019;5:1431–8.

    PubMed  PubMed Central  Google Scholar 

  42. Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, et al. The immune landscape of human pancreatic ductal carcinoma: Key players, clinical implications, and challenges. Cancers (Basel) 2022;14:995.

  43. Ullman NA, Burchard PR, Dunne RF, Linehan DC. Immunologic strategies in pancreatic cancer: Making cold tumors hot. J Clin Oncol. 2022;40:2789–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, et al. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev. 2020;86:102016.

    CAS  PubMed  Google Scholar 

  45. Bear AS, Vonderheide RH. O’Hara MH. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell. 2020;38:788–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeh HS, Yong J. Alternative polyadenylation of mRNAs: 3’-untranslated region matters in gene expression. Mol Cells. 2016;39:281–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Ma X, Cui Y, Rotival M, Chen W, Zou X, et al. Immune-response 3’UTR alternative polyadenylation quantitative trait loci contribute to variation in human complex traits and diseases. Nat Commun. 2023;14:8347.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Romero JM, Grünwald B, Jang GH, Bavi PP, Jhaveri A, Masoomian M, et al. A four-chemokine signature is associated with a T-cell-inflamed phenotype in primary and metastatic pancreatic cancer. Clin Cancer Res. 2020;26:1997–2010.

    CAS  PubMed  Google Scholar 

  49. Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 2020;80:1991–2003.

    CAS  PubMed  Google Scholar 

  50. Zhang W, Wan Y, Zhang Y, Liu Q, Zhu X. CSTF2 acts as a prognostic marker correlated with immune infiltration in hepatocellular carcinoma. Cancer Manag Res. 2022;14:2691–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17:527–40.

    PubMed  PubMed Central  Google Scholar 

  52. Zheng Y, Li X, Deng S, Zhao H, Ye Y, Zhang S, et al. CSTF2 mediated mRNA N6-methyladenosine modification drives pancreatic ductal adenocarcinoma m6A subtypes. Nat Commun. 2023;14:6334.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, Mac Guad R, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020;10:399–413.

    CAS  PubMed  Google Scholar 

  54. Ma X, Chan TA. Solving the puzzle of what makes immunotherapies work. Trends Cancer. 2022;8:890–900.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Dongming Kuang (college of life science in Sun Yat-sen University) for his insightful advice during the project.

Funding

This study was supported by National Natural Science Foundation of China Projects (82325037 and 82072617 to J Zheng, 82272694 to X Huang, 82003162 to J Zhang, and 82303159 to CX), the National Key R&D Program of China (2021YFA1302100 to J Zheng), Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07S096 to DL) and Cancer Innovative Research Programme of Sun Yat-sen University Cancer Center (CIRP-SYSUCC-0002 and PT13010201 to DL), Young Talents Programme of Sun Yat-sen University Cancer Center (YTP-SYSUCC-0062 to J Zhang, YTP-SYSUCC0015 to J Zheng and YTP-SYSUCC-0068 to X Huang).

Author information

Authors and Affiliations

Authors

Contributions

X He, JL, J Zhang, J Zheng, DL and X Huang designed the study. X He, SZ and JL contributed to the performance of experiments, X He and YZ contributed to the interpretation of data. X He, J Zhang, J Zheng and DL contributed to the writing of the paper. ZC, ZX, CX, L Zeng, Shuang Liu, Shaoqiu Liu, RB and SW contributed to the methods and preparation of figure. L Zhuang, ML, HZ and QZ were responsible for tissue samples and matched clinical information collection. J Zhang, X Huang, J Zheng and DL supervised the work. For the co–first authors, the authorship order was assigned on the basis of their contributions to this work.

Corresponding authors

Correspondence to Jian Zheng, Xudong Huang or Jialiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods in this study were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from each patient, and this study was approved by the Institutional Review Board of the Sun Yat-sen University Cancer Center (approval number: GZR2020-036). All animal experiments were approved by the Institutional Animal Care and Use Committee of the Sun Yat-sen University Cancer Center (approval number: 2021-000284).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Liu, J., Zhou, Y. et al. CSTF2-impeded innate αβ T cell infiltration and activation exacerbate immune evasion of pancreatic cancer. Cell Death Differ 32, 973–988 (2025). https://doi.org/10.1038/s41418-025-01464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01464-0

Search

Quick links