Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crosstalk between O-GlcNAcylation and phosphorylation in metabolism: regulation and mechanism

Subjects

Abstract

Cells produce metabolic intermediates through catalytic reactions, mainly via post-translational modifications. The modification of proteins by O-linked N-acetylglucosamine, known as O-GlcNAcylation, is one of the most common post-translational modifications. As O-GlcNAcylation and phosphorylation can occur at serine or threonine residues, it is crucial that the interplay between these two modifications is vital to bioenergetic and biosynthetic demand. Although emerging recognition linking O-GlcNAc modification and phosphorylation to protein functions has been obtained, the issue of how altered O-GlcNAcylation or phosphorylation regulates each other in the metabolic system remains uncertain. The combination of cell biological and proteomic approaches over the recent few years has not only highlighted the interactions between O-GlcNAcylation and phosphorylation in protein function but also prompted us to elucidate the underlying mechanisms behind this crosstalk controlling metabolic homeostasis. The purpose of this review is to summarize recent advances in the O-GlcNAcylation/phosphorylation regulation of the metabolic process. An extensive exploration of this interplay has significant implications for metabolic control systems, including glucose, lipid, and nucleotide metabolism, where dysregulation in O-GlcNAcylation and phosphorylation of metabolic syndrome is essential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The HBP pathway and O-GlcNAcylation produced by HBP.
Fig. 2: In metabolism, the O-GlcNAcylation of protein can inhibit the phosphorylation.
Fig. 3: In metabolism, protein phosphorylation can inhibit O-GlcNAcylation.
Fig. 4: Mechanism of the crosstalk between O-GlcNAcylation and phosphorylation.
Fig. 5: Crosstalk between O-GlcNAcylation and phosphorylation in metabolism.

Similar content being viewed by others

References

  1. Judge A, Dodd MS. Metabolism. Essays Biochem. 2020;64:607–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ye J, Medzhitov R. Control strategies in systemic metabolism. Nat Metab. 2019;1:947–57.

    Article  PubMed  Google Scholar 

  3. Chen L, Chen X-W, Huang X, Song B-L, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 2019;62:1420–58.

    Article  PubMed  Google Scholar 

  4. Knaus LS, Basilico B, Malzl D, Gerykova Bujalkova M, Smogavec M, Schwarz LA, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival. Cell. 2023;186:1950–67.e25.

    Article  CAS  PubMed  Google Scholar 

  5. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  6. Finley LWS. What is cancer metabolism? Cell. 2023;186:1670–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Sig Transduct Target Ther. 2023;8:220.

    Article  CAS  Google Scholar 

  8. DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell. 2022;185:2678–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259:3308–17.

    Article  CAS  PubMed  Google Scholar 

  10. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol. 1987;104:1157–64.

    Article  CAS  PubMed  Google Scholar 

  11. Hart GW, Housley MP, Slawson C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article  CAS  PubMed  Google Scholar 

  12. Xu Z, Zhang Y, Ocansey DKW, Wang B, Mao F. Glycosylation in cervical cancer: new insights and clinical implications. Front Oncol. 2021;11:706862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Wang L, Ocansey DKW, Wang B, Wang L, Xu Z. Mucin-type O-glycans: barrier, microbiota, and immune anchors in inflammatory bowel disease. J Inflamm Res. 2021;14:5939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma J, Wu C, Hart GW. Analytical and biochemical perspectives of protein O-GlcNAcylation. Chem Rev. 2021;121:1513–81.

    Article  CAS  PubMed  Google Scholar 

  15. Müller R, Jenny A, Stanley P. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One. 2013;8:e62835.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. Elife. 2017;6:e24419.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu C, Li J, Lu L, Li M, Yuan Y, Li J. OGT and OGA: sweet guardians of the genome. J Biol Chem. 2024;300:107141.

  18. Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019;17:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma X, Liu H, Li J, Wang Y, Ding Y-H, Shen H, et al. Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis. Nat Commun. 2017;8:1941.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Isaji T, Fukuda T, Wang Y, Gu J. O-GlcNAcylation regulates integrin-mediated cell adhesion and migration via formation of focal adhesion complexes. J Biol Chem. 2019;294:3117–24.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Hua J, Zhan Y, Chen C, Liu Y, Yang L, et al. O-GlcNAcylation stimulates the deubiquitination activity of USP16 and regulates cell cycle progression. J Biol Chem. 2024;300:107150.

  22. Zhou Z, Zheng X, Zhao J, Yuan A, Lv Z, Shao G, et al. ULK1-dependent phosphorylation of PKM2 antagonizes O-GlcNAcylation and regulates the Warburg effect in breast cancer. Oncogene. 2024;43:1–10.

  23. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet. 2024. https://doi.org/10.1038/s41576-024-00725-x.

  25. Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci. 2010;123:13–22.

    Article  CAS  PubMed  Google Scholar 

  26. Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev. 2022;51:5691–730.

    Article  CAS  PubMed  Google Scholar 

  27. Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O’Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol. 2023;23:787–806.

    Article  CAS  PubMed  Google Scholar 

  28. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.

    Article  CAS  PubMed  Google Scholar 

  29. Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet. 2014;5:270.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen T, Xie S, Cheng J, Zhao Q, Wu H, Jiang P, et al. AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis. Nat Commun. 2024;15:686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai Z, Li C-F, Han F, Liu C, Zhang A, Hsu C-C, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell. 2020;80:263–278.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab. 2015;26:676–87.

    Article  CAS  PubMed  Google Scholar 

  33. Tan W, Jiang P, Zhang W, Hu Z, Lin S, Chen L, et al. Posttranscriptional regulation of de novo lipogenesis by glucose-induced O-GlcNAcylation. Mol Cell. 2021;81:1890–1904.e7.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao M, Ren K, Xiong X, Xin Y, Zou Y, Maynard JC, et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity. 2022;55:1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Zhang B, Stutz B, Liu Z-W, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. Sci Adv. 2022;8:eabn8092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Zhou Q, Zhang P, Tan W, Li Y, Xu Z, et al. Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation. Nat Chem Biol. 2023. https://doi.org/10.1038/s41589-023-01354-x.

  37. Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem. 2024;300:105615.

    Article  CAS  PubMed  Google Scholar 

  38. Swamy M, Pathak S, Grzes KM, Damerow S, Sinclair LV, van Aalten DMF, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008;451:964–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wong Y-K, Wang J, Lim TK, Lin Q, Yap CT, Shen H-M. O-GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a pro-survival mechanism in cancer cells. Proteomics. 2022;22:e2100175.

    Article  PubMed  Google Scholar 

  41. Yang Y, Fu M, Li M-D, Zhang K, Zhang B, Wang S, et al. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nat Commun. 2020;11:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sodi VL, Bacigalupa ZA, Ferrer CM, Lee JV, Gocal WA, Mukhopadhyay D, et al. Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation. Oncogene. 2018;37:924–34.

    Article  CAS  PubMed  Google Scholar 

  43. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma J, Hou C, Wu C. Demystifying the O-GlcNAc code: a systems view. Chem Rev. 2022;122:15822–64.

    Article  CAS  PubMed  Google Scholar 

  45. Sam van der L, Ac L, Ajr H. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. FEBS J. 2018;285. https://doi.org/10.1111/febs.14491.

  46. Chatham JC, Zhang J, Wende AR. Role of O-Linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiol Rev. 2021;101:427–93.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Li M, Jiang H, Luo S, Shao F, Xia Y, et al. Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol. 2022;24:1655–65.

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y-F, Zhu J-J, Li J, Ye X-S. O-GlcNAcylation increases PYGL activity by promoting phosphorylation. Glycobiology. 2022;32:101–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA. 2008;105:13793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Li X, Luan HH, Zhang B, Zhang K, Nam JH, et al. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proc Natl Acad Sci USA. 2020;117:16616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hb R, Jp S, Md L, J W, X Y. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab. TEM 2013;24. https://doi.org/10.1016/j.tem.2013.02.002.

  52. Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, et al. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer. Acta Pharm Sin B. 2022;12:558–80.

    Article  CAS  PubMed  Google Scholar 

  53. Gu L, Zhu Y, Watari K, Lee M, Liu J, Perez S, et al. Fructose-1,6-bisphosphatase is a nonenzymatic safety valve that curtails AKT activation to prevent insulin hyperresponsiveness. Cell Metab. 2023;35:1009–1021.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hamanaka RB, Mutlu GM. PFKFB3, a direct target of p63, is required for proliferation and inhibits differentiation in epidermal keratinocytes. J Investig Dermatol. 2017;137:1267–76.

    Article  CAS  PubMed  Google Scholar 

  56. Li F-L, Liu J-P, Bao R-X, Yan G, Feng X, Xu Y-P, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hawkins LJ, Wang X, Xue X, Wang H, Storey KB. Phosphoproteomic analysis of X enopus laevis reveals expression and phosphorylation of hypoxia-inducible PFKFB3 during dehydration. iScience. 2020;23:101598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337:975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei Y, Chen T, Li Y, Shang M, Zhang Y, Jin Y, et al. O-GlcNAcylation of PFKFB3 is required for tumor cell proliferation under hypoxia. Oncogenesis. 2020;9:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20:137–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen J, Yang S, Li Y, Ziwen X, Zhang P, Song Q, et al. De novo nucleotide biosynthetic pathway and cancer. Genes Dis. 2023;10:2331–8.

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Shao J, Zeng Z, He Y, Tang C, Park SH, et al. Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism. Cell Death Differ. 2022;29:206–17.

    Article  CAS  PubMed  Google Scholar 

  63. Qian X, Li X, Tan L, Lee J-H, Xia Y, Cai Q, et al. Conversion of PRPS Hexamer to Monomer by AMPK-Mediated Phosphorylation Inhibits Nucleotide Synthesis in Response to Energy Stress. Cancer Discov. 2018;8:94–107.

    Article  CAS  PubMed  Google Scholar 

  64. Tarrant MK, Rho H-S, Xie Z, Jiang YL, Gross C, Culhane JC, et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat Chem Biol. 2012;8:262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, et al. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors. 2023. https://doi.org/10.1002/biof.2032.

  66. Uhle S, Medalia O, Waldron R, Dumdey R, Henklein P, Bech-Otschir D, et al. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 2003;22:1302–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Su Y, Luo Y, Zhang P, Lin H, Pu W, Zhang H, et al. Glucose-induced CRL4COP1-p53 axis amplifies glycometabolism to drive tumorigenesis. Mol Cell. 2023;83:2316–2331.e7.

    Article  CAS  PubMed  Google Scholar 

  68. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73:377–92.

    Article  CAS  PubMed  Google Scholar 

  69. Yoon I, Nam M, Kim HK, Moon H-S, Kim S, Jang J, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science. 2020;367:205–10.

    Article  CAS  PubMed  Google Scholar 

  70. Kim K, Yoo HC, Kim BG, Kim S, Sung Y, Yoon I, et al. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Nat Commun. 2022;13:2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018;18:744–57.

    Article  CAS  PubMed  Google Scholar 

  72. Hardie DG. AMPK and Raptor: matching cell growth to energy supply. Mol Cell. 2008;30:263–5.

    Article  CAS  PubMed  Google Scholar 

  73. Xu C, Pan X, Wang D, Guan Y, Yang W, Chen X, et al. O-GlcNAcylation of Raptor transduces glucose signals to mTORC1. Mol Cell. 2023;83:3027–3040.e11.

    Article  CAS  PubMed  Google Scholar 

  74. Kim KH, Lee M-S. Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10:322–37.

    Article  CAS  PubMed  Google Scholar 

  75. Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25:1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruan H-B, Ma Y, Torres S, Zhang B, Feriod C, Heck RM, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi Y, Yan S, Shao G-C, Wang J, Jian Y-P, Liu B, et al. O-GlcNAcylation stabilizes the autophagy-initiating kinase ULK1 by inhibiting chaperone-mediated autophagy upon HPV infection. J Biol Chem. 2022;298:102341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pyo KE, Kim CR, Lee M, Kim J-S, Kim KI, Baek SH. ULK1 O-GlcNAcylation is crucial for activating VPS34 via ATG14L during autophagy initiation. Cell Rep. 2018;25:2878–2890.e4.

    Article  CAS  PubMed  Google Scholar 

  81. Ding Z, Pan Y, Shang T, Jiang T, Lin Y, Yang C, et al. URI alleviates tyrosine kinase inhibitors-induced ferroptosis by reprogramming lipid metabolism in p53 wild-type liver cancers. Nat Commun. 2023;14:6269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, et al. Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science. 2003;302:1208–12.

    Article  CAS  PubMed  Google Scholar 

  83. Burén S, Gomes AL, Teijeiro A, Fawal M-A, Yilmaz M, Tummala KS, et al. Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell. 2016;30:290–307.

    Article  PubMed  Google Scholar 

  84. Fu Y, Ning L, Feng J, Yu X, Guan F, Li X. Dynamic regulation of O-GlcNAcylation and phosphorylation on STAT3 under hypoxia-induced EMT. Cell Signal. 2022;93:110277.

    Article  CAS  PubMed  Google Scholar 

  85. Freund P, Kerenyi MA, Hager M, Wagner T, Wingelhofer B, Pham HTT, et al. O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia. 2017;31:2132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149:410–24.

    Article  CAS  PubMed  Google Scholar 

  87. Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184:5559–5576.e19.

    Article  CAS  PubMed  Google Scholar 

  88. Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl). 2016;94:137–54.

    Article  CAS  PubMed  Google Scholar 

  89. Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol. 2014;6:442–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo R, Wang S-S, Jiang X-Y, Zhang Y, Guo Y, Cui H-Y, et al. CHK2 promotes metabolic stress-induced autophagy through ULK1 phosphorylation. Antioxidants. 2022;11:1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chong ACN, Vandana JJ, Jeng G, Li G, Meng Z, Duan X, et al. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat Chem Biol. 2023. https://doi.org/10.1038/s41589-023-01466-4.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, et al. DNA damage response protein CHK2 regulates metabolism in liver cancer. Cancer Res. 2021;81:2861–73.

    Article  CAS  PubMed  Google Scholar 

  93. Li C, Deng C, Wang S, Dong X, Dai B, Guo W, et al. A novel role for the ROS-ATM-Chk2 axis mediated metabolic and cell cycle reprogramming in the M1 macrophage polarization. Redox Biol. 2024;70:103059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest. 2021;131:e144703.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev. 2013;32:363–76.

    Article  CAS  PubMed  Google Scholar 

  96. Sakabe K, Wang Z, Hart GW. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA. 2010;107:19915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zou Y, Pei J, Long H, Lan L, Dong K, Wang T, et al. H4S47 O-GlcNAcylation regulates the activation of mammalian replication origins. Nat Struct Mol Biol. 2023;30:800–11.

    Article  CAS  PubMed  Google Scholar 

  98. Lee JB, Pyo K-H, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers. 2021;13:5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh JP, Zhang K, Wu J, Yang X. O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 2015;356:244–50.

    Article  CAS  PubMed  Google Scholar 

  100. Xu S, Suttapitugsakul S, Tong M, Wu R. Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep. 2023;42:112796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu P, Shimoji S, Hart GW. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 2010;584:2526–38.

    Article  CAS  PubMed  Google Scholar 

  102. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004;32:1037–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yan W, Cao M, Ruan X, Jiang L, Lee S, Lemanek A, et al. Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nat Cell Biol. 2022;24:793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y, Baer K, et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 2013;17:291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sager RA, Woodford MR, Backe SJ, Makedon AM, Baker-Williams AJ, DiGregorio BT, et al. Post-translational regulation of FNIP1 creates a rheostat for the molecular chaperone Hsp90. Cell Rep. 2019;26:1344–1356.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8:1074–83.

    Article  CAS  PubMed  Google Scholar 

  107. Xu C, Liu GD, Feng L, Zhang CH, Wang F. Identification of O-GlcNAcylation modification in diabetic retinopathy and crosstalk with phosphorylation of STAT3 in retina vascular endothelium cells. Cell Physiol Biochem. 2018;49:1389–402.

    Article  CAS  PubMed  Google Scholar 

  108. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139:468–84.

    Article  CAS  PubMed  Google Scholar 

  109. Matsuno M, Yokoe S, Nagatsuka T, Morihara H, Moriwaki K, Asahi M. O-GlcNAcylation-induced GSK-3β activation deteriorates pressure overload-induced heart failure via lack of compensatory cardiac hypertrophy in mice. Front Endocrinol. 2023;14:1122125.

    Article  Google Scholar 

  110. Zhao Y, Tang Z, Shen A, Tao T, Wan C, Zhu X, et al. The role of PTP1B O-GlcNAcylation in hepatic insulin resistance. Int J Mol Sci. 2015;16:22856–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou J, Huynh QK, Hoffman RT, Crook ED, Daniels MC, Gulve EA, et al. Regulation of glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase. Diabetes. 1998;47:1836–40.

    Article  CAS  PubMed  Google Scholar 

  112. Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE. Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biol Chem. 2000;275:21981–7.

    Article  CAS  PubMed  Google Scholar 

  113. Li Y, Roux C, Lazereg S, LeCaer J-P, Laprévote O, Badet B, et al. Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate amidotransferase isoform 1. Biochemistry. 2007;46:13163–9.

    Article  CAS  PubMed  Google Scholar 

  114. Zibrova D, Vandermoere F, Göransson O, Peggie M, Mariño KV, Knierim A, et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J. 2017;474:983–1001.

    Article  CAS  PubMed  Google Scholar 

  115. Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun. 2018;9:374.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Eguchi S, Oshiro N, Miyamoto T, Yoshino K-I, Okamoto S, Ono T, et al. AMP-activated protein kinase phosphorylates glutamine: fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells. 2009;14:179–89.

    Article  CAS  PubMed  Google Scholar 

  117. Qin W, Lv P, Fan X, Quan B, Zhu Y, Qin K, et al. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc Natl Acad Sci USA. 2017;114:E6749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun. 2020;11:687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Z, Li X, Nai S, Geng Q, Liao J, Xu X, et al. Checkpoint kinase 1-induced phosphorylation of O-linked β-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis. J Biol Chem. 2017;292:19548–55.

    Article  CAS  PubMed  Google Scholar 

  120. Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289:10592–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Shu H, Liu J, Jin X, Wang L, Qu Y, et al. EGF promotes PKM2 O-GlcNAcylation by stimulating O-GlcNAc transferase phosphorylation at Y976 and their subsequent association. J Biol Chem. 2022;298:102340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Latorre-Muro P, O’Malley KE, Bennett CF, Perry EA, Balsa E, Tavares CDJ, et al. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 2021;33:598–614.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 2014;42:5594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  125. Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell. 2024;15:157–90.

    Article  CAS  PubMed  Google Scholar 

  126. Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023;24:273–87.

    Article  CAS  PubMed  Google Scholar 

  127. Koo S-Y, Park E-J, Noh H-J, Jo S-M, Ko B-K, Shin H-J, et al. Ubiquitination links DNA damage and repair signaling to cancer metabolism. Int J Mol Sci. 2023;24:8441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruan H-B, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteom. 2013;12:3489–97.

    Article  CAS  Google Scholar 

  129. Baba M, Hong S-B, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA. 2006;103:15552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem. 2007;76:367–85.

    Article  CAS  PubMed  Google Scholar 

  131. Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 2014;28:8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330:1349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, Jones SP, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 2013;17:303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol. 2024. https://doi.org/10.1038/s41569-024-00998-z.

  135. Song W, Isaji T, Nakano M, Liang C, Fukuda T, Gu J. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J. 2022;36:e22149.

    Article  CAS  PubMed  Google Scholar 

  136. Alam SMD, Tsukamoto Y, Ogawa M, Senoo Y, Ikeda K, Tashima Y, et al. N-Glycans on EGF domain-specific O-GlcNAc transferase (EOGT) facilitate EOGT maturation and peripheral endoplasmic reticulum localization. J Biol Chem. 2020;295:8560–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lv Z, Ma G, Zhong Z, Xie X, Li B, Long D. O-GlcNAcylation of RAB10 promotes hepatocellular carcinoma progression. Carcinogenesis. 2023;44:785–94.

  138. Zhang Y, Sun C, Ma L, Xiao G, Gu Y, Yu WO. GlcNAcylation promotes malignancy and cisplatin resistance of lung cancer by stabilising NRF2. Clin Transl Med. 2024;14:e70037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang X, Liu M, Chu Y, Liu Y, Cao X, Zhang H, et al. O-GlcNAcylation of ZEB1 facilitated mesenchymal pancreatic cancer cell ferroptosis. Int J Biol Sci. 2022;18:4135–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang M, Qiu Z, Zhang S, Fan X, Cai X, Xu B, et al. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling. Oncotarget. 2016;7:61390–402.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kronlage M, Dewenter M, Grosso J, Fleming T, Oehl U, Lehmann LH, et al. O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation. 2019;140:580–94.

    Article  CAS  PubMed  Google Scholar 

  142. Lei Y, Liu Q, Chen B, Wu F, Li Y, Dong X, et al. Protein O-GlcNAcylation coupled to Hippo signaling drives vascular dysfunction in diabetic retinopathy. Nat Commun. 2024;15:9334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA. 2000;97:5735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C-X. Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol. 2009;175:2089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem. 2023;299. https://doi.org/10.1016/j.jbc.2023.105411.

  146. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:10804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol. 2008;4:483–90.

    Article  CAS  PubMed  Google Scholar 

  148. Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, et al. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. eLife. 2024;13:RP94849.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zhu Q, Wang H, Chai S, Xu L, Lin B, Yi W, et al. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci USA. 2023;120:e2216796120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shcherbinin S, Kielbasa W, Dubois S, Lowe SL, Phipps KM, Tseng J, et al. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme: Translation from rat to human: Neuroimaging / evaluating treatments. Alzheimer’s Dement. 2020;16:e040558.

    Article  Google Scholar 

  151. Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, et al. Discovery of MK-8719, a potent O-GlcNAcase inhibitor as a potential treatment for tauopathies. J Med Chem. 2019;62:10062–97.

    Article  CAS  PubMed  Google Scholar 

  152. Permanne B, Sand A, Ousson S, Nény M, Hantson J, Schubert R, et al. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for tau and α-synuclein proteinopathies. ACS Chem Neurosci. 2022;13:1296–314.

    Article  CAS  PubMed  Google Scholar 

  153. He P, Bian A, Miao Y, Jin W, Chen H, He J, et al. Discovery of a highly potent and orally bioavailable STAT3 dual phosphorylation inhibitor for pancreatic cancer treatment. J Med Chem. 2022;65:15487–511.

    Article  CAS  PubMed  Google Scholar 

  154. Ma J, Li Y, Hou C, Wu C. O-GlcNAcAtlas: a database of experimentally identified O-GlcNAc sites and proteins. Glycobiology. 2021;31:719–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hu F, Li W, Li Y, Hou C, Ma J, Jia C. O-GlcNAcPRED-DL: prediction of protein O-GlcNAcylation sites based on an ensemble model of deep learning. J Proteome Res. 2023. https://doi.org/10.1021/acs.jproteome.3c00458.

  156. Ma J, Hou C, Li Y, Chen S, Wu C. OGT protein interaction network (OGT-PIN): a curated database of experimentally identified interaction proteins of OGT. Int J Mol Sci. 2021;22:9620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, et al. The human O-GlcNAcome database and meta-analysis. Sci Data. 2021;8:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW. Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem. 2001;293:169–77.

    Article  CAS  PubMed  Google Scholar 

  159. Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, van Aalten DM. O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J. 2012;31:1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kamemura K, Hayes BK, Comer FI, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem. 2002;277:19229–35.

    Article  CAS  PubMed  Google Scholar 

  161. Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids. 2011;40:857–68.

    Article  CAS  PubMed  Google Scholar 

  162. Hirosawa M, Hayakawa K, Yoneda C, Arai D, Shiota H, Suzuki T, et al. Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity. Sci Rep. 2016;6:31785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fehl C, Hanover JA. Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol. 2022;18:8–17.

    Article  CAS  PubMed  Google Scholar 

  164. Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev. 2021;50:10451–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu S-H, Boyce M, Wands AM, Bond MR, Bertozzi CR, Kohler JJ. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc Natl Acad Sci USA. 2012;109:4834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ge Y, Lu H, Yang B, Woo CM. Small molecule-activated O -GlcNAcase for spatiotemporal removal of O -GlcNAc in live cells. ACS Chem Biol. 2023;18:193–201.

    Article  CAS  PubMed  Google Scholar 

  167. He J, Fan Z, Tian Y, Yang W, Zhou Y, Zhu Q, et al. Spatiotemporal activation of protein O-GlcNAcylation in living cells. J Am Chem Soc. 2022;144:4289–93.

    Article  CAS  PubMed  Google Scholar 

  168. Zhu Y, Hart GW. Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin. Cell. 2022;S0092-8674:01529–0152.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Qian and Xu laboratories for helpful discussions. Thanks to Jiajia Song for her advice and encouragement.

Funding

This work has been supported by National Natural Science Foundation of China (grant No. 32000903), and the Scientific Research Foundation of Jiangsu University for Senior Professional Talents (20JDG48).

Author information

Authors and Affiliations

Authors

Contributions

QJZ and ZWX conceived and wrote the first draft of both text and figures. SSZ, WHL, and HQ conceptualized, wrote, revised, and edited the manuscript.

Corresponding authors

Correspondence to Hui Qian or Zhiwei Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhou, S., Lou, W. et al. Crosstalk between O-GlcNAcylation and phosphorylation in metabolism: regulation and mechanism. Cell Death Differ 32, 1181–1199 (2025). https://doi.org/10.1038/s41418-025-01473-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01473-z

Search

Quick links