Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lactylation-driven USP4-mediated ANXA2 stabilization and activation promotes maintenance and radioresistance of glioblastoma stem cells

Abstract

Glioblastoma (GBM) is the most primary lethal brain cancer, characterized by the presence of glioblastoma stem cells (GSCs) that initiate and sustain tumor growth and induce radioresistance. Annexin A2 (ANXA2) has been reported to contribute to glioblastoma progression and impart stem cell-like properties to GSCs, however, its post-translational modifications and mechanisms in GSCs maintenance remain poorly understood. Here, we identify that USP4 is preferentially expressed by GSCs in GBM, USP4/ANXA2 supports GSCs maintenance and radioresistance. Specifically, USP4 interacts with ANXA2, stabilizing its protein by deubiquitinating ANXA2, which mediates its proteasomal degradation and Y24 phosphorylation. USP4 directly cleaves Lys48- and Lys63-linked polyubiquitin chains of ANXA2, with the Lys63-linked polyubiquitin chains of ANXA2 K28 mediating its Y24 phosphorylation. Moreover, K10 acetylation of ANXA2 enhances its interaction with USP4. Importantly, USP4/ANXA2 promotes GSCs maintenance and radioresistance by activating BMX-mediated STAT3 activation. H3K18 lactylation is responsible for the upregulation of USP4 in GSCs. Our studies reveal that USP4/ANXA2 plays critical roles in maintaining GSCs and therapeutic resistance, highlighting the importance of lactylation, acetylation, ubiquitination, and phosphorylation as critical post-translational modifications for USP4-mediated stabilization and activity of ANXA2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP4 is preferentially expressed by GSCs in GBM.
Fig. 2: USP4 is required for survival, self-renewal and sensitivity to ionizing radiation (IR) of GSCs.
Fig. 3: USP4 interacts with ANXA2 and stabilizes its protein.
Fig. 4: USP4 directly cleaves Lys 48-, Lys 63-polyubiquitin chain on ANXA2.
Fig. 5: USP4 regulates Y24 phosphorylation of ANXA2 by cleaving Lys63-polyubiquitin chain on ANXA2 K28.
Fig. 6: K10 acetylation of ANXA2 increases its interaction with USP4.
Fig. 7: USP4/ANXA2 disrupts BMX-mediated STAT3 activation in GSCs.
Fig. 8: Lactic-acid-induced USP4 upregulation in GBM via H3K18 histone lactylation.

Similar content being viewed by others

Data availability

All data associated with this study are present in the paper or the Supplementary Materials.

References

  1. Kim JY, Kim HJ, Jung CW, Choi BI, Lee DH, Park MJ. PARK7 maintains the stemness of glioblastoma stem cells by stabilizing epidermal growth factor receptor variant III. Oncogene. 2021;40:508–21.

    Article  PubMed  CAS  Google Scholar 

  2. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392:432–46.

    Article  PubMed  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  PubMed  CAS  Google Scholar 

  4. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu L, Liu Z, Liu Q, Wu W, Lin P, Liu X, et al. LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2’-O-methylation. Nat Commun. 2023;14:7526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Grindheim AK, Saraste J, Vedeler A. Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj. 2017;1861:2515–29.

    Article  PubMed  CAS  Google Scholar 

  7. Mao L, Yuan W, Cai K, Lai C, Huang C, Xu Y, et al. EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene. 2021;40:3610–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li P, Yang L, Park SY, Liu F, Li AH, Zhu Y, et al. Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling. Oncogene. 2024;43:899–917.

    Article  PubMed  CAS  Google Scholar 

  9. Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, et al. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy. 2024;20:659–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ling X, Qi C, Cao K, Lu M, Yang Y, Zhang J, et al. METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov. 2024;10:203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao S, Li B, Zhao R, Pan Z, Zhang S, Qiu W, et al. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-kappaB pathway. Oncogene. 2023;42:138–53.

    Article  PubMed  CAS  Google Scholar 

  12. Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res. 2019;38:133.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, et al. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-kappaB positive feedback loop. J Cell Mol Med. 2019;23:6907–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ham SW, Kim JY, Seo S, Hong N, Park MJ, Kim Y, et al. Annexin A2 stabilizes oncogenic JAG1 intracellular domain by inhibiting proteasomal degradation in glioblastoma cells. Int J Mol Sci. 2023;24:14776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52:1081–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu ZY, Lin XT, Zhang YJ, Gu YP, Yu HQ, Fang L, et al. FBXW10-S6K1 promotes ANXA2 polyubiquitination and KRAS activation to drive hepatocellular carcinoma development in males. Cancer Lett. 2023;566:216257.

    Article  PubMed  CAS  Google Scholar 

  18. Kling T, Ferrarese R, Oh D, Johansson P, Heiland DH, et al. Integrative modeling reveals annexin A2-mediated epigenetic control of mesenchymal glioblastoma. EBioMedicine. 2016;12:72–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto Y, Ichikawa T, Kurozumi K, Otani Y, Fujimura A, Fujii K, et al. Annexin A2-STAT3-Oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma. Acta Neuropathol Commun. 2020;8:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Signore M, Pelacchi F, di Martino S, Runci D, Biffoni M, Giannetti S, et al. Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis. 2014;5:e1223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, Di Maio D, et al. Dual inhibition of PDK1 and Aurora Kinase A: an effective strategy to induce differentiation and apoptosis of human glioblastoma multiforme stem cells. ACS Chem Neurosci. 2017;8:100–14.

    Article  PubMed  CAS  Google Scholar 

  22. Wang Z, Xu X, Liu N, Cheng Y, Jin W, Zhang P, et al. SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance. Oncotarget. 2018;9:192–204.

    Article  PubMed  Google Scholar 

  23. Uras IZ, List T, Nijman SM. Ubiquitin-specific protease 4 inhibits mono-ubiquitination of the master growth factor signaling kinase PDK1. PLoS ONE. 2012;7:e31003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17:666–72.

    Article  PubMed  CAS  Google Scholar 

  25. Gao Y, Nihira NT, Bu X, Chu C, Zhang J, Kolodziejczyk A, et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 2020;22:1064–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023.

    Article  PubMed  CAS  Google Scholar 

  27. Yuan J, Yang Y, Gao Z, Wang Z, Ji W, Song W, et al. Tyr23 phosphorylation of Anxa2 enhances STAT3 activation and promotes proliferation and invasion of breast cancer cells. Breast Cancer Res Treat. 2017;164:327–40.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Z, Lu L, Li W. TAGLN2 promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of colorectal cancer cells by activating STAT3 signaling through ANXA2. Oncol Lett. 2021;22:737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shi Y, Guryanova OA, Zhou W, Liu C, Huang Z, Fang X, et al. Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Sci Transl Med. 2018;10:eaah6816.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J, et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell. 2011;19:498–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Venneti S, Thompson CB. Metabolic reprogramming in brain tumors. Annu Rev Pathol. 2017;12:515–45.

    Article  PubMed  CAS  Google Scholar 

  32. Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020;11:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xu L, Ye Y, Tao Z, Wang T, Wei Y, Cai W, et al. O-GlcNAcylation of melanophilin enhances radiation resistance in glioblastoma via suppressing TRIM21 mediated ubiquitination. Oncogene. 2024;43:61–75.

    Article  PubMed  Google Scholar 

  35. Tao W, Zhang A, Zhai K, Huang Z, Huang H, Zhou W, et al. SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. EMBO Mol Med. 2020;12:e12291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Osuka S, Van Meir EG. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest. 2017;127:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tao W, Chu C, Zhou W, Huang Z, Zhai K, Fang X, et al. Dual role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun. 2020;11:3015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol. 2014;71:16–24.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther. 2022;7:113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wei WS, Chen X, Guo LY, Li XD, Deng MH, Yuan GJ, et al. TRIM65 supports bladder urothelial carcinoma cell aggressiveness by promoting ANXA2 ubiquitination and degradation. Cancer Lett. 2018;435:10–22.

    Article  PubMed  CAS  Google Scholar 

  41. Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, et al. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun. 2019;10:1870.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wada K, Kamitani T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun. 2006;342:253–8.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Han Y, Xiao W, Gao Y, Sui Z, Ren P, et al. USP4 promotes the proliferation, migration, and invasion of esophageal squamous cell carcinoma by targeting TAK1. Cell Death Dis. 2023;14:730.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-kappaB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902–12.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol. 2012;14:717–26.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou F, Xie F, Jin K, Zhang Z, Clerici M, Gao R, et al. USP4 inhibits SMAD4 monoubiquitination and promotes activin and BMP signaling. EMBO J. 2017;36:1623–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li F, Hu Q, He T, Xu J, Yi Y, Xie S, et al. The deubiquitinase USP4 stabilizes Twist1 protein to promote lung cancer cell stemness. Cancers. 2020;12:1582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022;23:329–49.

    Article  PubMed  CAS  Google Scholar 

  49. Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol. 2022;85:209–18.

    Article  PubMed  CAS  Google Scholar 

  50. Sun X, Zhang K, Peng X, Zhou P, Qu C, Yang L, et al. HDAC4 mediated LHPP deacetylation enhances its destabilization and promotes the proliferation and metastasis of nasopharyngeal carcinoma. Cancer Lett. 2023;562:216158.

    Article  PubMed  CAS  Google Scholar 

  51. Gronroos E, Hellman U, Heldin CH, Ericsson J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell. 2002;10:483–93.

    Article  PubMed  CAS  Google Scholar 

  52. Shimizu K, Gi M, Suzuki S, North BJ, Watahiki A, Fukumoto S, et al. Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Rep. 2021;37:109988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Saharinen P, Ekman N, Sarvas K, Parker P, Alitalo K, Silvennoinen O. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cd. elta. Blood. 1997;90:4341–53.

    Article  CAS  Google Scholar 

  55. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Su J, Zheng Z, Bian C, Chang S, Bao J, Yu H, et al. Functions and mechanisms of lactylation in carcinogenesis and immunosuppression. Front Immunol. 2023;14:1253064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lv X, Lv Y, Dai X. Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 2023;25:e7.

    Article  PubMed  CAS  Google Scholar 

  59. Yuan W, Zhang Q, Gu D, Lu C, Dixit D, Gimple RC, et al. Dual role of CXCL8 in maintaining the mesenchymal state of glioblastoma stem cells and M2-like tumor-associated macrophages. Clin Cancer Res. 2023;29:3779–92.

    Article  PubMed  CAS  Google Scholar 

  60. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32:42–56.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mack SC, Singh I, Wang X, Hirsch R, Wu Q, Villagomez R, et al. Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. J Exp Med. 2019;216:1071–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tu Y, Chen Z, Zhao P, Sun G, Bao Z, Chao H, et al. Smoothened promotes glioblastoma radiation resistance via activating USP3-mediated claspin deubiquitination. Clin Cancer Res. 2020;26:1749–62.

    Article  PubMed  CAS  Google Scholar 

  64. Ye Y, Xu L, Zhang L, Zhao P, Cai W, Fu G, et al. Meningioma achieves malignancy and erastin-induced ferroptosis resistance through FOXM1-AURKA-NRF2 axis. Redox Biol. 2024;72:103137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 82120108018 to JJ, 82303835 to YT], the National Key Research and Development Program of China [grant number 2021YFA1101802-2 to JJ], the Priority Academic Program Development of Jiangsu Higher Education Institutions [grant numbers JX10231803, JX10231804 to JJ], Xinjiang Uygur Autonomous Region Tianshan Innovation Team Plan Item [grant numbers 2024D14012 to JJ], the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars [grant number BK20220727 to YT], the China Postdoctoral Science Foundation [grant number 2021M701495 to YT].

Author information

Authors and Affiliations

Contributions

JJ and YT conceived and designed the study and interpreted results. YT, LX, GF, JW, PX, ZT, YY, JH, WC, HZ, and QW performed most experiments. JJ and YT wrote the manuscript with comments from all authors.

Corresponding author

Correspondence to Jing Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study involved animal experiments that were approved by the Ethics Review Committee of Nanjing Medical University. All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Xu, L., Fu, G. et al. Lactylation-driven USP4-mediated ANXA2 stabilization and activation promotes maintenance and radioresistance of glioblastoma stem cells. Cell Death Differ 32, 1648–1663 (2025). https://doi.org/10.1038/s41418-025-01494-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01494-8

This article is cited by

Search

Quick links