Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZNF593 regulates the cGAS-mediated innate immune response by attenuating cGAS-DNA binding

Abstract

The enzyme cyclic GMP-AMP synthase (cGAS) is essential for detecting aberrantly located double-stranded DNA (dsDNA) from genomic, mitochondrial, and microbial origins. Through the synthesis of 2′3′-cGAMP, cGAS triggers the activation of the stimulator of interferon genes pathway, which initiates in vivo innate immune responses. Here, we identify zinc finger proteins ZNF593, which translocate from the nucleus to the cytoplasm after viral infection, as a negative regulator of antiviral type I IFN (IFN-I) production. ZNF593 directly binds to cGAS and suppresses its activation by inhibiting the cGAS-dsDNA interaction. ZNF593 deficiency increases IRF3 nuclear translocation and promotes DNA virus-triggered IFN production. Furthermore, ZNF593 deficiency promotes antiviral innate responses in vivo, improving survival rates in mice against HSV-1 infection. We further find that ZNF593 plays a protective role in systemic lupus erythematosus (SLE) pathology. Notably, replenishing ZNF593 effectively reduced IFN production in peripheral blood mononuclear cells (PBMCs) of SLE patients or in the TMPD-induced murine SLE model. Our findings suggest that ZNF593 negatively regulates IFN-β signaling by targeting cGAS activation, providing new insights into the regulatory mechanisms for antiviral defenses and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS interacted with ZNF593.
Fig. 2: ZNF593 negatively regulates IFN-β signaling.
Fig. 3: ZNF593 deficiency impairs virus replication.
Fig. 4: ZNF593 negatively regulates dsDNA-triggered phosphorylation of TBK1 and IRF3.
Fig. 5: ZNF593 deficiency protect mice from HSV-1 infection.
Fig. 6: ZNF593 inhibits the DNA-binding affinity of cGAS.
Fig. 7: ZNF593 is associated with the pathology of SLE.

Similar content being viewed by others

Data availability

All relevant data that support the study are provided in the article and Supplementary Information. Other relevant data can be obtained from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Zhang ZD, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. Cell Insight. 2022;1:100001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30.

    Article  CAS  PubMed  Google Scholar 

  3. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  4. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3:1355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA Virus. Immunity. 2016;45:555–69.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    Article  CAS  PubMed  Google Scholar 

  8. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53:43–53.

    Article  CAS  PubMed  Google Scholar 

  10. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, et al. Acetylation blocks cGAS activity and inhibits Self-DNA-induced autoimmunity. Cell. 2019;176:1447–60.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20:18–28.

    Article  CAS  PubMed  Google Scholar 

  12. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA. 2015;112:E5699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article  CAS  PubMed  Google Scholar 

  14. Pan M, Yin Y, Hu T, Wang X, Jia T, Sun J, et al. UXT attenuates the CGAS-STING1 signaling by targeting STING1 for autophagic degradation. Autophagy. 2023;19:440–56.

    Article  CAS  PubMed  Google Scholar 

  15. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20:657–74.

    Article  CAS  PubMed  Google Scholar 

  16. Vilas CK, Emery LE, Denchi EL, Miller KM. Caught with One’s Zinc fingers in the genome integrity cookie jar. Trends Genet. 2018;34:313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3:17071.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qi YY, Cui Y, Lang H, Zhai YL, Zhang XX, Wang XY, et al. The ZNF76 rs10947540 polymorphism associated with systemic lupus erythematosus risk in Chinese populations. Sci Rep. 2021;11:5186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie G, Lu Y, Sun Y, Zhang SS, Keystone EC, Gregersen PK, et al. Identification of the NF-kappaB activating protein-like locus as a risk locus for rheumatoid arthritis. Ann Rheum Dis. 2013;72:1249–54.

    Article  CAS  PubMed  Google Scholar 

  21. Kasinathan, B., Colmenares S.U., 3rd, McConnell H., Young J.M., Karpen G.H., and Malik H.S., Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. Elife, 2020;9:e63368.

  22. Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.

    Article  CAS  PubMed  Google Scholar 

  23. Sakata J, Utsumi F, Suzuki S, Niimi K, Yamamoto E, Shibata K, et al. Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget. 2017;8:99482–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jo, A., Lee Y., Kam T.I., Kang S.U., Neifert S., Karuppagounder S.S., et al., PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med, 2021;13:eaax8891.

  26. Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev. 2020;34:341–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lian H, Zang R, Wei J, Ye W, Hu MM, Chen YD, et al. The zinc-finger protein ZCCHC3 binds RNA and facilitates viral RNA Sensing and Activation of the RIG-I-like Receptors. Immunity. 2018;49:438–48.e5.

    Article  CAS  PubMed  Google Scholar 

  28. Mullard A. First in vivo gene-editing drugs enter the clinic. Nat Rev Drug Discov. 2017;17:7.

    PubMed  Google Scholar 

  29. Wang, G. and Zheng C., Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiol Rev. 2021;45:1–11.

  30. Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, Kashigi F, et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol. 2011;12:37–44.

    Article  CAS  PubMed  Google Scholar 

  31. Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun. 2023;14:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fusco DN, Pratt H, Kandilas S, Cheon SS, Lin W, Cronkite DA, et al. HELZ2 Is an IFN effector mediating suppression of dengue virus. Front Microbiol. 2017;8:240.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.

    Article  PubMed  Google Scholar 

  34. Terunuma A, Shiba K, Noda T. A novel genetic system to isolate a dominant negative effector on DNA-binding activity of Oct-2. Nucleic Acids Res. 1997;25:1984–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bengtsson AA, Ronnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31:415–28.

    Article  PubMed  Google Scholar 

  36. Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, et al. AKT2 reduces IFNbeta1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J. 2022;41:e108016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, et al. Expression of Cyclic GMP-AMP Synthase in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017;69:800–7.

    Article  CAS  PubMed  Google Scholar 

  38. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100:2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429–40.

    Article  CAS  PubMed  Google Scholar 

  40. Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172:ITC81–I96.

    Article  PubMed  Google Scholar 

  41. Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K, Brohawn P, et al. Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 2017;69:376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, et al. MYSM1 represses innate immunity and autoimmunity through suppressing the cGAS-STING pathway. Cell Rep. 2020;33:108297.

    Article  CAS  PubMed  Google Scholar 

  43. Hayes PL, Lytle BL, Volkman BF, Peterson FC. The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein Sci. 2008;17:571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10:252–63.

    Article  CAS  PubMed  Google Scholar 

  45. Bassler J, Klein I, Schmidt C, Kallas M, Thomson E, Wagner MA, et al. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery. Mol Cell Biol. 2012;32:4898–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai X, Sui C, Liu F, Chen T, Zhang L, Zheng Y, et al. The protein arginine methyltransferase PRMT9 attenuates MAVS activation through arginine methylation. Nat Commun. 2022;13:5016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, et al. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ. 2023;30:992–1004.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Deyu Zhu (Shandong University, China) for kindly providing Human cGAS purified protein. This work was supported by the grants from the National key research and development program (2024YFA0918401 to BL), the National Natural Science Foundation of China (82222027, 32270918 to BL, 82301984 to XB, 82321002, 32230033, 81930039 to CG), grants from the National key research and development program (2021YFC2300603 to CG), grants from Natural Science Foundation of Shandong Province (ZR201911140289 to CG), the China Postdoctoral Science Foundation (2024M751821 to XB), and Shandong Postdoctora1 Science Foundation (SDCX-ZG-202400006 to XB).

Author information

Authors and Affiliations

Contributions

CG and BL conceived the study; CG and BL designed and supervised the research; XB performed the research; ND, NC, MZ, JY, YZ, YL, JZ contributed reagents and experimental advice; TC, FL, WS, YZ, WZ, QS provided discussions; CG, BL and XB analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Chengjiang Gao or Bingyu Liu.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Dong, N., Cao, N. et al. ZNF593 regulates the cGAS-mediated innate immune response by attenuating cGAS-DNA binding. Cell Death Differ 32, 1845–1858 (2025). https://doi.org/10.1038/s41418-025-01508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01508-5

Search

Quick links