Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The metabolic enzyme GYS1 condenses with NONO/p54nrb in the nucleus and spatiotemporally regulates glycogenesis and myogenic differentiation

Abstract

Accumulating evidence indicates that metabolic enzymes can directly couple metabolic signals to transcriptional adaptation and cell differentiation. Glycogen synthase 1 (GYS1), the key metabolic enzyme for glycogenesis, is a nucleocytoplasmic shuttling protein compartmentalized in the cytosol and nucleus. However, the spatiotemporal regulation and biological function of nuclear GYS1 (nGYS1) microcompartments remain unclear. Here, we show that GYS1 dynamically reorganizes into nuclear condensates under conditions of glycogen depletion or transcription inhibition. nGYS1 complexes with the transcription factor NONO/p54nrb and undergoes liquid–liquid phase separation to form biomolecular condensates, leading to its nuclear retention and inhibition of glycogen biosynthesis. Compared to their wild-type littermates, Nono-deficient mice exhibit exercise intolerance, higher muscle glycogen content, and smaller myofibers. Additionally, Gys1 or Nono deficiency prevents C2C12 differentiation and cardiotoxin-induced muscle regeneration in mice. Mechanistically, nGYS1 and NONO co-condense with the myogenic transcription factor MyoD and preinitiation complex (PIC) proteins to form transcriptional condensates, driving myogenic gene expression during myoblast differentiation. These results reveal the spatiotemporal regulation and subcellular function of nuclear GYS1 condensates in glycogenesis and myogenesis, providing mechanistic insights into glycogenoses and muscular dystrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reassembly of subcellular GYS1 protein bodies under energy or transcription stress conditions.
Fig. 2: nGYS1 interacts with and condenses NONO in cells.
Fig. 3: NONO condenses GYS1 in the nucleus to inhibit glycogenesis and support strenuous exercise in mice.
Fig. 4: GYS1 protein phase separates and co-condensates with NONO in vitro.
Fig. 5: The nGYS1 condensates are more dynamic than the glycosome GYS1.
Fig. 6: Nono deficiency leads to myogenic defects in mouse skeletal muscle.
Fig. 7: GYS1-NONO co-condenses with MyoD and Pol II to regulate myogenic gene transcription.
Fig. 8: A diagram depicting the spatiotemporal regulation and subcellular function of GYS1.

Similar content being viewed by others

Data availability

All data necessary to evaluate the conclusions of this study are presented in the paper and/or the supplementary information. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository, with dataset identifiers PXD051836 and PXD058561.

References

  1. Roach PJ. Glycogen and its metabolism. Curr Mol Med. 2002;2:101–20.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N, et al. Control of glycogen deposition. Febs Lett. 2003;546:127–32.

    Article  CAS  PubMed  Google Scholar 

  3. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.

    Article  CAS  PubMed  Google Scholar 

  4. Groop L, Orho-Melander M. New insights into impaired muscle glycogen synthesis. PLoS Med. 2008;5:e25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rybicka KK. Glycosomes-the organelles of glycogen metabolism. Tissue Cell. 1996;28:253–65.

    Article  CAS  PubMed  Google Scholar 

  6. Prats C, Graham TE, Shearer J. The dynamic life of the glycogen granule. J Biol Chem. 2018;293:7089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrer JC, Baque S, Guinovart JJ. Muscle glycogen synthase translocates from the cell nucleus to the cystosol in response to glucose. Febs Lett. 1997;415:249–52.

    Article  CAS  PubMed  Google Scholar 

  8. Cid E, Cifuentes D, Baque S, Ferrer JC, Guinovart JJ. Determinants of the nucleocytoplasmic shuttling of muscle glycogen synthase. FEBS J. 2005;272:3197–213.

    Article  CAS  PubMed  Google Scholar 

  9. Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J. 2004;23:3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang A, Singh S, Phillips GN Jr, Thorson JS. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol. 2011;22:800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao ST, Rossmann MG. Comparison of super-secondary structures in proteins. J Mol Biol. 1973;76:241–56.

    Article  CAS  PubMed  Google Scholar 

  12. Barbas A, Popescu A, Frazao C, Arraiano CM, Fialho AM. Rossmann-fold motifs can confer multiple functions to metabolic enzymes: RNA binding and ribonuclease activity of a UDP-glucose dehydrogenase. Biochem Biophys Res Commun. 2013;430:218–24.

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs G, Diges C, Kohlstaedt LA, Wehner KA, Sarnow P. Proteomic analysis of ribosomes: translational control of mRNA populations by glycogen synthase GYS1. J Mol Biol. 2011;410:118–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maldonado R, Mancilla H, Villarroel-Espindola F, Slebe F, Slebe JC, Mendez R, et al. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis? J Cell Biochem. 2016;117:2597–607.

    Article  CAS  PubMed  Google Scholar 

  15. Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, Mirrielees J, et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA. 2009;106:10147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Connell JD, Zhao A, Ellington AD, Marcotte EM. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol. 2012;28:89–111.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prouteau M, Loewith R. Regulation of Cellular Metabolism through Phase Separation of Enzymes. Biomolecules. 2018;8:160.

  18. Nesterov SV, Ilyinsky NS, Uversky VN. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochim Biophys Acta Mol Cell Res. 2021;1868:119102.

    Article  CAS  PubMed  Google Scholar 

  19. Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, et al. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep. 2017;20:895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brangwynne CP. Phase transitions and size scaling of membrane-less organelles. J Cell Biol. 2013;203:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. An S, Kumar R, Sheets ED, Benkovic SJ. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science. 2008;320:103–6.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184:5559–5576 e5519.

    Article  CAS  PubMed  Google Scholar 

  24. Yang YS, Hanke JH, Carayannopoulos L, Craft CM, Capra JD, Tucker PW. NonO, a non-POU-domain-containing, octamer-binding protein, is the mammalian homolog of Drosophila nonAdiss. Mol Cell Biol. 1993;13:5593–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res. 2016;44:3989–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei Y, Luo H, Yee PP, Zhang L, Liu Z, Zheng H, et al. Paraspeckle Protein NONO Promotes TAZ Phase Separation in the Nucleus to Drive the Oncogenic Transcriptional Program. Adv Sci. 2021;8:e2102653.

    Article  Google Scholar 

  27. Zhang S, Cooper JA, Chong YS, Naveed A, Mayoh C, Jayatilleke N, et al. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep. 2023;24:e54977.

    Article  CAS  PubMed  Google Scholar 

  28. Fan XJ, Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, et al. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res. 2021;11:2838–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Benegiamo G, Mure LS, Erikson G, Le HD, Moriggi E, Brown SA, et al. The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab. 2018;27:404–418.e407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, et al. Paraspeckles: a novel nuclear domain. Curr Biol. 2002;12:13–25.

    Article  CAS  PubMed  Google Scholar 

  31. Fox AH, Nakagawa S, Hirose T, Bond CS. Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. Trends Biochem Sci. 2018;43:124–35.

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Li Z, Shu FJ, Xiong H, Phillips AC, Dynan WS. Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Nucleic Acids Res. 2014;42:9771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  CAS  PubMed  Google Scholar 

  34. Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell. 2018;46:135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood). 2018;243:118–28.

    Article  CAS  PubMed  Google Scholar 

  36. Wardle FC. Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil. 2019;40:211–26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, et al. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun. 2022;13:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361:eaar2555.

  39. Plys AJ, Kingston RE. Dynamic condensates activate transcription. Science. 2018;361:329–30.

    Article  CAS  PubMed  Google Scholar 

  40. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A Phase Separation Model for Transcriptional Control. Cell. 2017;169:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell. 2005;16:2395–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diaz A, Martinez-Pons C, Fita I, Ferrer JC, Guinovart JJ. Processivity and Subcellular Localization of Glycogen Synthase Depend on a Non-catalytic High Affinity Glycogen-binding Site. J Biol Chem. 2011;286:18505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cid E, Gomis RR, Geremia RA, Guinovart JJ, Ferrer JC. Identification of two essential glutamic acid residues in glycogen synthase. J Biol Chem. 2000;275:33614–21.

    Article  CAS  PubMed  Google Scholar 

  44. Wilson WA, Boyer MP, Davis KD, Burke M, Roach PJ. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content. Can J Microbiol. 2010;56:408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36:880-7.

  46. Bellucci M, Agostini F, Masin M, Tartaglia GG. Predicting protein associations with long noncoding RNAs. Nat Methods. 2011;8:444–5.

    Article  CAS  PubMed  Google Scholar 

  47. Chen B, Deng S, Ge T, Ye M, Yu J, Lin S, et al. Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in. Protein Cell. 2020;11:641–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–39.

    Article  CAS  PubMed  Google Scholar 

  49. Testoni G, Duran J, Garcia-Rocha M, Vilaplana F, Serrano AL, Sebastian D, et al. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment. Cell Metab. 2017;26:256–266.e254.

    Article  CAS  PubMed  Google Scholar 

  50. Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci USA. 2020;117:33254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fastman NM, Liu Y, Ramanan V, Merritt H, Ambing E, DePaoli-Roach AA, et al. The structural mechanism of human glycogen synthesis by the GYS1-GYG1 complex. Cell Rep. 2022;40:111041.

    Article  CAS  PubMed  Google Scholar 

  52. McCorvie TJ, Loria PM, Tu M, Han S, Shrestha L, Froese DS, et al. Molecular basis for the regulation of human glycogen synthase by phosphorylation and glucose-6-phosphate. Nat Struct Mol Biol. 2022;29:628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kollberg G, Tulinius M, Gilljam T, Ostman-Smith I, Forsander G, Jotorp P, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.

    Article  CAS  PubMed  Google Scholar 

  54. Pederson B, Chen HY, Schroeder J, Shou WN, Depaoli-Roach A, Roach P. Effect of muscle glycogen synthase (GYS1) knockout on cardiac development and glucose homeostasis. Diabetes. 2003;52:A301–A302.

    Google Scholar 

  55. Xu X, Jiang H, Lu Y, Zhang M, Cheng C, Xue F, et al. Deficiency of NONO is associated with impaired cardiac function and fibrosis in mice. J Mol Cell Cardiol. 2019;137:46–58.

    Article  CAS  PubMed  Google Scholar 

  56. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009;19:347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cisse, II Light-induced targeting enables proteomics on endogenous condensates. Cell. 2024;187:7079–7090.e17.

  58. Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol. 2024;26:213–36.

  59. Piekarowicz K, Bertrand AT, Azibani F, Beuvin M, Julien L, Machowska M, et al. A Muscle Hybrid Promoter as a Novel Tool for Gene Therapy. Mol Ther Methods Clin Dev. 2019;15:157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Preiss T, Hall AG, Lightowlers RN. Identification of bovine glutamate dehydrogenase as an RNA-binding protein. J Biol Chem. 1993;268:24523–6.

    Article  CAS  PubMed  Google Scholar 

  61. Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN, Kellermayer M. Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun. 2000;275:253–60.

    Article  CAS  PubMed  Google Scholar 

  62. Anderson SL, Schirf V, McAlister-Henn L. Effect of AMP on mRNA binding by yeast NAD+-specific isocitrate dehydrogenase. Biochemistry. 2002;41:7065–73.

    Article  CAS  PubMed  Google Scholar 

  63. Pioli PA, Hamilton BJ, Connolly JE, Brewer G, Rigby WF. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1. J Biol Chem. 2002;277:35738–45.

    Article  CAS  PubMed  Google Scholar 

  64. Sun FJ, Caetano-Anolles G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics. 2010;11:153.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brewer MK, Torres P, Ayala V, Portero-Otin M, Pamplona R, Andres-Benito P, et al. Glycogen accumulation modulates life span in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2023;168:744–59.

  66. Li C, Wei Q, Gu X, Chen Y, Chen X, Cao B, et al. Decreased Glycogenolysis by miR-338-3p Promotes Regional Glycogen Accumulation Within the Spinal Cord of Amyotrophic Lateral Sclerosis Mice. Front Mol Neurosci. 2019;12:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Homma S, Beermann ML, Yu B, Boyce FM, Miller JB. Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle. 2016;6:42.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xiao L, Yin Y, Sun Z, Liu J, Jia Y, Yang L, et al. AMPK phosphorylation of FNIP1 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Sci Adv. 2024;10:eadj2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xie X, Hu H, Tong X, Li L, Liu X, Chen M, et al. The mTOR-S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol. 2018;20:320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J, Hyman AA. A User’s Guide for Phase Separation Assays with Purified Proteins. J Mol Biol. 2018;430:4806–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell. 2023;186:4936–4955.e4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Core Facilities at the State Key Laboratory of Oncology in South China and the Medical Science Public Platform of Shenzhen Campus, Sun Yat-sen University, for their assistance with imaging experiments. The mScarlet-labeled MS2-tagged Neat1_2 knock-in cell line was provided by Professor Zhou Songyang from Sun Yat-sen University. The GYS2 and SC35 cDNAs were provided by Professor Ronggui Hu at the Shanghai Institute of Biochemistry and Cell Biology, while the AAV vectors were provided by Professor Qiurong Ding from the Shanghai Institute of Nutrition and Health.

Funding

This project is supported by the National Natural Science Foundation of China (No. 31871439 to XX, No. 32425019 to ZG), Ministry of Science and Technology of China (National Key R&D Program of China 2022YFA0806000) to ZG, the Shenzhen Science and Technology Program (JCYJ20240813151133043 and JCYJ20220530145613030 to XX), the Guangdong Basic and Applied Basic Research Foundation (2023A1515011923 to XX), and the Open Funds from the State Key Laboratory of Oncology in South China (HN2022-02 to XX and LF).

Author information

Authors and Affiliations

Authors

Contributions

X Xie conceived the idea; S Peng, C Li, Y Wang, Y Yi, X Chen, Y Yin, Z Gan, and X Xie designed and performed the experiments, with contributions from F Yang, F Chen, Y Ouyang, H Xu, B Chen, H Shi, Y Zhao, and L Feng; Q Li performed TurboID MS analysis. S Peng, C Li, Y Wang, Y Yi, Z Gan, and X Xie analyzed the data and wrote the manuscript with input from all other authors. L Feng, Z Gan, and X Xie supervised the project.

Corresponding authors

Correspondence to Lin Feng, Zhenji Gan or Xiaoduo Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Li, C., Wang, Y. et al. The metabolic enzyme GYS1 condenses with NONO/p54nrb in the nucleus and spatiotemporally regulates glycogenesis and myogenic differentiation. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01509-4

Search

Quick links