Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of plant metacaspases in cell death and survival

Abstract

In plants, metacaspases—cysteine proteases—have gained attention for their roles in programmed cell death (PCD). However, to date, their proteolytic activity has not been established as a direct executioner of PCD, analogous to caspases in animals. In this regard, the specific executioners of PCD remain to be identified in plants, leaving the process less well understood than in animals. More recently, metacaspases have also been recognized for their roles in cellular homeostasis. This perspective explores the pro-death and pro-survival roles of plant metacaspases in plant stress responses and development. Under abiotic stress conditions, such as heat, drought or high salinity, metacaspases help maintain protein homeostasis and mitigate damage by regulating processes like the unfolded protein response. In plant immunity, metacaspases have context-dependent pro-death or pro-survival roles. Pro-survival roles include cleavage and generation of immune peptides and regulating immune receptor stability as part of immunocondensates. They have also been shown to tightly regulate immunogenic cell death after pathogen attack, although their mode of action in this context remains elusive. Developmentally, metacaspases participate in key processes that involve PCD, like xylem differentiation and lateral root cap formation, where they help control cellular remodelling. Ultimately, metacaspases are emerging as multifunctional molecules crucial to cellular integrity, immunity, and development. Understanding the balance between cell death and survival pathways in plants is crucial, as it directly impacts crop resilience to environmental stresses and pathogens, ultimately influencing food security and our dependence on plant-based resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural features of caspases, paracaspases and metacaspases.
Fig. 2: Roles of plant metacaspases.
Fig. 3: Overview of plant immunity.

Similar content being viewed by others

References

  1. Huysmans M, Lema A S, Coll NS, Nowack MK. Dying two deaths — programmed cell death regulation in development and disease. Curr Opin Plant Biol. 2017;35:37–44.

    Article  CAS  PubMed  Google Scholar 

  2. Kulkarni M, Hardwick JM. Programmed cell death in unicellular versus multicellular organisms. Annu Rev Genet. 2023;57:435–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17:333–40.

    Article  CAS  PubMed  Google Scholar 

  4. Maekawa T, Kashkar H, Coll NS. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ. 2023;30:258–68.

    Article  PubMed  Google Scholar 

  5. Minina EA, Dauphinee AN, Ballhaus F, Gogvadze V, Smertenko AP, Bozhkov PV. Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biol. 2021;19:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salguero-Linares J, Coll NS. Cell death as a defense strategy against pathogens in plants and animals. PLoS Pathog. 2023;19:e1011253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell. 2000;6:961–7.

    CAS  PubMed  Google Scholar 

  8. Minina EA, Staal J, Alvarez VE, Berges JA, Berman-Frank I, Beyaert R, et al. Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell. 2020;77:927–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enoksson M, Salvesen GS. Metacaspases are not caspases – always doubt. Cell Death Differ. 2010;17:1221.

    Article  CAS  PubMed  Google Scholar 

  10. Klemenčič M, Funk C. Evolution and structural diversity of metacaspases. J Exp Bot. 2019;70:2039–47.

    Article  PubMed  Google Scholar 

  11. Bernacki MJ, Rusaczonek A, Gołębiewska K, Majewska-Fala AB, Czarnocka W, Karpiński SM. METACASPASE8 (MC8) Is a Crucial Protein in the LSD1-dependent cell death pathway in response to ultraviolet stress. Int J Mol Sci. 2024;25:3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, et al. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci. 2005;102:14463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, et al. Arabidopsis Type I metacaspases control cell death. Science. 2010;330:1393–7.

    Article  CAS  PubMed  Google Scholar 

  14. Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: Functional linkage with autophagy. Cell Death Differ. 2014;21:1399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Escamez S, André D, Zhang B, Bollhöner B, Pesquet E, Tuominen H. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation. Biol Open. 2016;5:122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in arabidopsis. J Biol Chem. 2008;283:774–83.

    Article  CAS  PubMed  Google Scholar 

  17. Hoeberichts FA, ten Have A, Woltering EJ. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta. 2003;217:517–22.

    Article  CAS  PubMed  Google Scholar 

  18. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, et al. A Caspase-related protease regulates apoptosis in yeast. Mol Cell. 2002;9:911–7.

    Article  CAS  PubMed  Google Scholar 

  19. Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, et al. Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol. 2013;203:917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe N, Lam E. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J. 2011;66:969–82.

    Article  CAS  PubMed  Google Scholar 

  21. Yao S, Luo S, Pan C, Xiong W, Xiao D, Wang A, et al. Metacaspase MC1 enhances aluminum-induced programmed cell death of root tip cells in Peanut. Plant Soil. 2020;448:479–94.

    Article  Google Scholar 

  22. Yue J, Wang Y, Jiao J, Wang W, Wang H. The Metacaspase TaMCA-Id Negatively Regulates Salt-Induced Programmed Cell Death and Functionally Links With Autophagy in Wheat. Front Plant Sci. 2022;13:904933.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang C, Gong P, Wei R, Li S, Zhang X, Yu Y, et al. The metacaspase gene family of Vitis vinifera L.: Characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes. Gene. 2013;528:267–76.

    Article  CAS  PubMed  Google Scholar 

  24. Ambit A, Fasel N, Coombs GH, Mottram JC. An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ. 2008;15:113–22.

    Article  CAS  PubMed  Google Scholar 

  25. Hill SM, Hao X, Liu B, Nyström T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science. 2014;344:1389–92.

    Article  CAS  PubMed  Google Scholar 

  26. Laverrière M, Cazzulo JJ, Alvarez VE. Antagonic activities of Trypanosoma cruzi metacaspases affect the balance between cell proliferation, death and differentiation. Cell Death Differ. 2012;19:1358–69.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee REC, Brunette S, Puente LG, Megeney LA. Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA. 2010;107:13348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukherjee D, Gupta S, Saran N, Datta R, Ghosh A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1. Mol Microbiol. 2017;106:815–31.

    Article  CAS  PubMed  Google Scholar 

  29. Pei J, Zhao M, Zhang L, Wu X. The Metacaspase Gene PoMCA1 Enhances the Mycelial Heat Stress Tolerance and Regulates the Fruiting Body Development of Pleurotus ostreatus. Horticulturae. 2024;10:116.

    Article  Google Scholar 

  30. Proto WR, Castanys-Munoz E, Black A, Tetley L, Moss CX, Juliano L, et al. Trypanosoma brucei Metacaspase 4 Is a pseudopeptidase and a virulence factor. J Biol Chem. 2011;286:39914–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, et al. A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance. New Phytol. 2023;239:1281–99.

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, Van Midden KP, et al. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. Plant Cell. 2023;35:3325–44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yusof NFM, Saparin NF, Seman ZA, Rahman ZA, Sew YS, Roslan MAM, et al. Overexpression of type II rice metacaspase, OsMC4, increases endoplasmic reticulum stress tolerance in transgenic rice calli. Plant Gene. 2023;34:100421.

    Article  CAS  Google Scholar 

  34. Zou Y, Sabljić I, Horbach N, Dauphinee AN, Åsman A, Sancho Temino L, et al. Thermoprotection by a cell membrane–localized metacaspase in a green alga. Plant Cell. 2024;36:665–87.

    Article  CAS  PubMed  Google Scholar 

  35. Cao J, Wang C, Hao N, Fujiwara T, Wu T. Endoplasmic Reticulum Stress and Reactive Oxygen Species in Plants. Antioxidants. 2022;11:1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Franzmann TM, Alberti S. Protein Phase Separation as a Stress Survival Strategy. Cold Spring Harb Perspect Biol. 2019;11:a034058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, et al. Stress-related biomolecular condensates in plants. Plant Cell. 2023;35:3187–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Gan Y, Cao J, Dong X, Ouyang W. Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med. 2022;49:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolozin B. Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener. 2012;7:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eisele-Bürger AM, Eisele F, Hill SM, Hao X, Schneider KL, Imamoglu R et al. Calmodulin regulates protease versus co-chaperone activity of a metacaspase. Cell Rep 2023;42. https://doi.org/10.1016/j.celrep.2023.113372.

  41. Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, Krebs J, et al. Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem. 1988;263:17055–62.

    Article  CAS  PubMed  Google Scholar 

  42. Bouché N, Yellin A, Snedden WA, Fromm H. Plant-Specific calmodulin-binding proteins. Annu Rev Plant Biol. 2005;56:435–66.

    Article  PubMed  Google Scholar 

  43. Bonilla M. Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J. 2002;21:2343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruz MC. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 2002;21:546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudgeon DD, Zhang N, Ositelu OO, Kim H, Cunningham KW. Nonapoptotic Death of Saccharomyces cerevisiae Cells That Is Stimulated by Hsp90 and Inhibited by Calcineurin and Cmk2 in Response to Endoplasmic Reticulum Stresses. Eukaryot Cell. 2008;7:2037–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lotem J, Kama R, Sachs L. Suppression or induction of apoptosis by opposing pathways downstream from calcium-activated calcineurin. Proc Natl Acad Sci. 1999;96:12016–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang N-N, Dudgeon DD, Paliwal S, Levchenko A, Grote E, Cunningham KW. Multiple Signaling Pathways Regulate Yeast Cell Death during the Response to Mating Pheromones. Mol Biol Cell. 2006;17:3409–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hauptmann P, Lehle L. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging. J Biol Chem. 2008;283:19151–63.

    Article  CAS  PubMed  Google Scholar 

  49. de Carvalho MJA, Amorim Jesuino RS, Daher BS, Silva-Pereira I, de Freitas SM, Soares CMA, et al. Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol. 2003;39:204–10.

    Article  PubMed  Google Scholar 

  50. McCormack E, Tsai Y-C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 2005;10:383–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 2006;13:84–95.

    Article  CAS  PubMed  Google Scholar 

  52. Jakobek JL, Smith-Becker JA, Lindgren PB. A Bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding protein. MPMI. 1999;12:712–9.

    Article  CAS  PubMed  Google Scholar 

  53. Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, et al. HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide–Gated Channel Ion Channel Family[W]. Plant Cell. 2003;15:365–79.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yoshioka K, Moeder W, Kang H-G, Kachroo P, Masmoudi K, Berkowitz G, et al. The Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell. 2006;18:747–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, et al. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. J Biol Chem. 2002;277:19304–14.

    Article  CAS  PubMed  Google Scholar 

  56. Arazi T, Sunkar R, Kaplan B, Fromm H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 1999;20:171–82.

    Article  CAS  PubMed  Google Scholar 

  57. Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud J-P, Ranjeva R, et al. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J. 2004;38:410–20.

    Article  CAS  PubMed  Google Scholar 

  58. Delk NA, Johnson KA, Chowdhury NI, Braam J. CML24, Regulated in Expression by Diverse Stimuli, Encodes a Potential Ca2+ Sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 2005;139:240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lokdarshi A, Conner WC, McClintock C, Li T, Roberts DM. Arabidopsis CML38, a Calcium Sensor That Localizes to Ribonucleoprotein Complexes under Hypoxia Stress. Plant Physiol. 2016;170:1046–59.

    Article  CAS  PubMed  Google Scholar 

  60. Field S, Conner WC, Roberts DM. Arabidopsis CALMODULIN-LIKE 38 Regulates Hypoxia-Induced Autophagy of SUPPRESSOR OF GENE SILENCING 3 Bodies. Front Plant Sci 2021;12. https://doi.org/10.3389/fpls.2021.722940.

  61. Sobri ZM, Gallois P. Characterising the Gene Expression, Enzymatic Activity and Subcellular Localisation of Arabidopsis thaliana Metacaspase 5 (AtMCA-IIb). Biology. 2023;12:1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chapin LJ, Jones ML. A Type I and a Type II Metacaspase Are Differentially Regulated during Corolla Development and in Response to Abiotic and Biotic Stresses in Petunia × hybrida. Horticulturae. 2022;8:1151.

    Article  Google Scholar 

  63. Liu H, Liu J, Wei Y. Identification and analysis of the metacaspase gene family in tomato. Biochem Biophys Res Commun. 2016;479:523–9.

    Article  CAS  PubMed  Google Scholar 

  64. Vergou GA, Bajhaiya AK, Corredor L, Lema Asqui S, Timmerman E, Impens F, et al. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress. Physiol Plant. 2024;176:e14401.

    Article  CAS  PubMed  Google Scholar 

  65. Lambert L, De Carpentier F, André P, Marchand CH, Danon A. Type II metacaspase mediates light-dependent programmed cell death in Chlamydomonas reinhardtii. Plant Physiol. 2024;194:2648–62.

    Article  CAS  PubMed  Google Scholar 

  66. Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ. 2011;18:1247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiol. 2022;188:1419–34.

    Article  CAS  PubMed  Google Scholar 

  68. Daskalov A. Emergence of the fungal immune system. iScience. 2023;26:106793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870.

    Article  CAS  PubMed  Google Scholar 

  70. Bi G, Su M, Li N, Liang Y, Dang S, Xu J, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184:3528–41.e12.

    Article  CAS  PubMed  Google Scholar 

  71. Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, Walton WG, et al. Plant “helper” immune receptors are Ca2+ -permeable nonselective cation channels. Science. 2021;373:420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen Q, Hasegawa K, Oelerich N, Prakken A, Tersch LW, Wang J, et al. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe. 2024;32:453–65.e6.

    Article  CAS  PubMed  Google Scholar 

  73. Gong P, Riemann M, Dong D, Stoeffler N, Gross B, Markel A, et al. Two grapevine metacaspase genes mediate ETI-like cell death in grapevine defence against infection of Plasmopara viticola. Protoplasma. 2019;256:951–69.

    Article  CAS  PubMed  Google Scholar 

  74. Hao L, Goodwin PH, Hsiang T. Expression of a metacaspase gene of Nicotiana benthamiana after inoculation with Colletotrichum destructivum or Pseudomonas syringae pv. tomato, and the effect of silencing the gene on the host response. Plant Cell Rep. 2007;26:1879–88.

    Article  CAS  PubMed  Google Scholar 

  75. Hao Y, Wang X, Wang K, Li H, Duan X, Tang C, et al. TaMCA1, a regulator of cell death, is important for the interaction between wheat and Puccinia striiformis. Sci Rep. 2016;6:26946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang L, Zhang H, Hong Y, Liu S, Li D, Song F. Stress-Responsive Expression, Subcellular Localization and Protein–Protein Interactions of the Rice Metacaspase Family. Int J Mol Sci. 2015;16:16216–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 2004;428:764–7.

    Article  CAS  PubMed  Google Scholar 

  78. Kim S-M, Bae C, Oh S-K, Choi D. A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. Mol Plant Pathol. 2013;14:557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen W, Liu J, Li J-F. Type-II Metacaspases mediate the processing of plant elicitor peptides in arabidopsis. Mol Plant. 2019;12:1524–33.

    Article  CAS  PubMed  Google Scholar 

  80. Van Baarlen P, Staats M, Van Kan JAL. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol. 2004;5:559–74.

    Article  PubMed  Google Scholar 

  81. Wang S, Xue M, He C, Shen D, Jiang C, Zhao H, et al. AtMC1 Associates With LSM4 to Regulate Plant Immunity Through Modulating Pre-mRNA Splicing. Mol Plant Microbe Interact. 2021;34:1423–32.

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Wang X, Feng H, Tang C, Bai P, Wei G, et al. TaMCA4, a Novel Wheat Metacaspase Gene Functions in Programmed Cell Death Induced by the Fungal Pathogen Puccinia striiformis f. sp. tritici. MPMI. 2012;25:755–64.

    Article  CAS  PubMed  Google Scholar 

  83. Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, et al. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat Commun. 2021;12:3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Roberts M, Tang S, Stallmann A, Dangl JL, Bonardi V. Genetic Requirements for Signaling from an Autoactive Plant NB-LRR intracellular innate immune receptor. PLoS Genet 2013; 9. https://doi.org/10.1371/journal.pgen.1003465.

  85. Salguero-Linares J, Armengot L, Ayet J, Ruiz-Solaní N, Saile SC, Salas-Gómez M, et al. Lack of AtMC1 catalytic activity triggers autoimmunity dependent on NLR stability. EMBO Rep. 2025. https://doi.org/10.1038/s44319-025-00426-4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu D, Tian H, Xu F, Yang J, Feng W, Bell S, et al. The prodomain of Arabidopsis metacaspase 2 positively regulates immune signaling mediated by pattern-recognition receptors. New Phytol. 2024;241:430–43.

    Article  CAS  PubMed  Google Scholar 

  87. Fritsch M, Günther SD, Schwarzer R, Albert M-C, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7.

    Article  CAS  PubMed  Google Scholar 

  88. Jaworski M, Marsland BJ, Gehrig J, Held W, Favre S, Luther SA, et al. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J. 2014;33:2765–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell. 2024;187:235–56.

    Article  CAS  PubMed  Google Scholar 

  90. Luan QL, Zhu YX, Ma S, Sun Y, Liu XY, Liu M, et al. Maize metacaspases modulate the defense response mediated by the NLR protein Rp1-D21 likely by affecting its subcellular localization. Plant J. 2021;105:151–66.

    Article  CAS  PubMed  Google Scholar 

  91. Song W, Liu L, Yu D, Bernardy H, Jirschitzka J, Huang S, et al. Substrate-induced condensation activates plant TIR domain proteins. Nature. 2024;627:847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang W, Gu Y. The emerging role of biomolecular condensates in plant immunity. Plant Cell. 2022;34:1568–72.

    Article  PubMed  Google Scholar 

  93. Zavaliev R, Mohan R, Chen T, Dong X. Formation of NPR1 Condensates Promotes Cell Survival during the Plant Immune Response. Cell. 2020;182:1093–108.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Holehouse AS, Pappu RV. Functional implications of intracellular phase transitions. Biochemistry. 2018;57:2415–23.

    Article  CAS  PubMed  Google Scholar 

  95. Xie Z, Zhao S, Tu Y, Liu E, Li Y, Wang X, et al. Proteasome resides in and dismantles plant heat stress granules constitutively. Mol Cell. 2024;84:3320–35.e7.

    Article  CAS  PubMed  Google Scholar 

  96. Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, et al. Damage on plants activates Ca2+ -dependent metacaspases for release of immunomodulatory peptides. Science. 2019;363:eaar7486.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang C, Wu Y, Liu J, Song B, Yu Z, Li J-F, et al. SUMOylation controls peptide processing to generate damage-associated molecular patterns in Arabidopsis. Devel Cell 2024;0. https://doi.org/10.1016/j.devcel.2024.11.010.

  98. Huh SU. Evolutionary Diversity and Function of Metacaspases in Plants: Similar to but Not Caspases. Int J Mol Sci. 2022;23:4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV. Metacaspases. Cell Death Differ. 2011;18:1279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bollhöner B, Zhang B, Stael S, Denancé N, Overmyer K, Goffner D, et al. Post mortem function of AtMC9 in xylem vessel elements. New Phytol. 2013;200:498–510.

    Article  PubMed  Google Scholar 

  101. Stael S, Sabljić I, Audenaert D, Andersson T, Tsiatsiani L, Kumpf RP, et al. Structure–function study of a Ca2+-independent metacaspase involved in lateral root emergence. Proc Natl Acad Sci. 2023;120:e2303480120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, et al. Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Current Biol. 2020;30:455–64.e7.

    Article  CAS  Google Scholar 

  103. Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, et al. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science. 2014;343:178–83.

    Article  CAS  PubMed  Google Scholar 

  104. Tsiatsiani L, Timmerman E, De Bock P-J, Vercammen D, Stael S, van de Cotte B, et al. The Arabidopsis metacaspase9 degradome. Plant Cell. 2013;25:2831–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hincha DK, Thalhammer A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans. 2012;40:1000–3.

    Article  CAS  PubMed  Google Scholar 

  106. Liu C, Hatzianestis IH, Pfirrmann T, Reza SH, Minina EA, Moazzami A, et al. Seed longevity is controlled by metacaspases. Nat Commun. 2024;15:6748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chapin LJ, Moon Y, Jones ML. Downregulating a Type I Metacaspase in Petunia Accelerates Flower Senescence. J Am Soc Hort Sci. 2017;142:405–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to all the colleagues whose research could not be cited owing to space limitations. We thank Peter Vandenabeele, Jens Staal and Hamid Kashkar for enlightening discussions on metacaspases, paracaspases and caspases and to Joel Ayet and Elena Moreno for constructive discussion and feedback. Figures were created with the help of Biorender.com.

Funding

Research at CRAG was supported by grants PID2022-136922NB-I00 funded by MCIN/AEI/10.13039/501100011033 (to N.S.C.); N.R.-S. is the recipient of a predoctoral fellowship FPU19/03778 funded by MU (o Ministerio de Universidades). M.S.-G. is a recipient of the predoctoral fellowship HORIZON-MSCA-2021-COFUND rePLANT-GA101081581 Funded by the European Union. L.A. is a recipient of the postdoctoral fellowship HORIZON-MSCA-2021-PF-ImmunoZoneHubs-GA#101068121 Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the EUROPEAN RESEARCH EXECUTIVE AGENCY (REA). Neither the European Union nor the granting authority can be held responsible for them. rePLANT MSCA-COFUND programmes are cofunded by the Severo Ochoa Programme for Centres of Excellence in R&D CEX2019-000902-S funded by MCIN/AEI/10.13039/501100011033. The work was also supported by the Generalitat de Catalunya through 2021SGR00675 and the CERCA Programme.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MS-G (lead), NR-S (supporting), LA (lead), NSC (lead). Writing - original draft: MS-G, NR-S, LA, NSC. Writing – review and editing: MS-G, NR-S, LA, NSC. Supervision: NSC. Funding acquisition: NSC, LA.

Corresponding authors

Correspondence to Laia Armengot or Nuria S. Coll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Gómez, M., Ruiz-Solaní, N., Armengot, L. et al. The role of plant metacaspases in cell death and survival. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01555-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01555-y

Search

Quick links