Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NAT10 regulates heart development and function by maintaining the expression of genes related to fatty acid β-oxidation and heart contraction

Abstract

Energy metabolism is crucial for heart development and function, and dysregulation of this process can lead to heart failure. However, the molecular mechanisms underlying these processes, particularly the role of RNA-binding proteins (RBPs)-mediated posttranscriptional regulation, remain largely unclear. We identified N-acetyltransferase 10 (NAT10) as a key regulator of heart function and cardiac diseases. NAT10 is crucial for heart development, and its dysregulation is associated with heart failure. Cardiac-specific deletion of Nat10 leads to dilated cardiomyopathy, heart failure, and postnatal death by downregulating genes related to fatty acid β-oxidation and heart contraction. Adult-onset knockout Nat10 also results in dilated cardiomyopathy and heart failure. NAT10-deficient hiPSC-CMs also showed impaired calcium transients during contraction. Restoration of NAT10(WT) and NAT10(G641E) (an N-acetyltransferase-inactive mutation), but not NAT10(K290A) (a loss-of-RNA-binding activity mutation), fully rescues the dilated cardiomyopathy, heart failure, and postnatal death phenotypes in Nat10-CKO mice by restoring expression of genes involved in fatty acid β-oxidation and heart contraction. The RNA-binding activity of NAT10 is essential for maintaining the expression of these genes. These findings demonstrate that NAT10 plays a critical role in heart development and function by maintaining the expression of genes related to fatty acid β-oxidation and heart contraction, highlighting its importance in maintaining heart health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NAT10 is associated with heart failure and cardiomyocyte-specific deletion of Nat10 causes dilated cardiomyopathy, heart failure and postnatal death in mice.
Fig. 2: Adult-onset cardiomyocyte-specific deletion of Nat10 causes dilated cardiomyopathy and heart failure.
Fig. 3: Cardiomyocyte-specific deletion of Nat10 greatly alters gene expression profile in the heart.
Fig. 4: The RNA-binding, but not acetyltransferase, activity is essential for NAT10 to promote heart development and maintain heart function.
Fig. 5: The RNA binding, but not acetyltransferase, activity is essential for NAT10 to maintain expression of fatty acid β-oxidation- and heart contraction-related genes.
Fig. 6: NAT10 is associated with transcripts related to fatty acid β-oxidation and heart contraction.
Fig. 7: Cardiomyocyte-specific deletion of Nat10 does not regulate translational efficiency.
Fig. 8: NAT10 regulates the mRNA stability for genes related to fatty acid β-oxidation and heart contraction.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. The RNA-seq data that support the findings of this study have been deposited in GEO under accession codes GSE274007, GSE274008, and GSE295332 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE274007; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274008; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE295332). The RIP-seq data that support the findings of this study have been deposited in GEO under accession codes GSE274009 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274009). The Ribo-seq data that support the findings of this study have been deposited in GEO under accession codes GSE295333 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE295333). All biological materials used are readily available from the authors or from standard commercial sources.

References

  1. Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol. 2024;187:38–50.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. 2018;128:3716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, Downes M, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6:13–24.

    Article  CAS  PubMed  Google Scholar 

  5. Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim JU, Won KJ, et al. A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res. 2020;126:1685–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10:1245–50.

    Article  CAS  PubMed  Google Scholar 

  7. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, et al. RBPMS2 is a myocardial-enriched splicing regulator required for cardiac function. Circ Res. 2022;131:980–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gan P, Wang Z, Morales MG, Zhang Y, Bassel-Duby R, Liu N, et al. RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development. Dev Cell. 2022;57:959–973.e957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175:1872–86.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018;46:9601–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei W, Zhang S, Han H, Wang X, Zheng S, Wang Z, et al. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep. 2023;42:112810.

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Wang WJ, Liu Q, Wu YK, Wu YW, Jiang Y, et al. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res. 2022;50:10896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, et al. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun. 2023;14:3729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao L, He Y, Li SJ, Yu XM, Liu ZC, Liang YY, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023;33:355–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9:1700.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shi J, Yang C, Zhang J, Zhao K, Li P, Kong C, et al. NAT10 is involved in cardiac remodeling through ac4C-mediated transcriptomic regulation. Circ Res. 2023;133:989–1002.

    Article  CAS  PubMed  Google Scholar 

  19. Xu T, Du T, Zhuang X, He X, Yan Y, Wu J, et al. Loss of NAT10 reduces the translation of Kmt5a mRNA through ac4C modification in cardiomyocytes and induces heart failure. J Am Heart Assoc. 2024;13:e035714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma W, Tian Y, Shi L, Liang J, Ouyang Q, Li J, et al. N-acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration. Nat Commun. 2024;15:2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Yuan B, Lu M, Wang Y, Ding N, Liu C, et al. The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nat Commun. 2021;12:7213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Ding K, Li X, Yuan B, Wang Y, Yao Z, et al. Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH). Nat Commun. 2022;13:4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding K, Zhang Z, Han Z, Shi L, Li X, Liu Y, et al. Liver ALKBH5 regulates glucose and lipid homeostasis independently through GCGR and mTORC1 signaling. Science. 2025;387:eadp4120.

    Article  CAS  PubMed  Google Scholar 

  24. Shi L, Li X, Zhang M, Qin C, Zhang Z, Chen Z. Downregulation of Wtap causes dilated cardiomyopathy and heart failure. J Mol Cell Cardiol. 2024;188:38–51.

    Article  CAS  PubMed  Google Scholar 

  25. Vandergriff AC, Hensley MT, Cheng K. Isolation and cryopreservation of neonatal rat cardiomyocytes. J Vis Exp. 2015;98:52726.

  26. Liu R, Wubulikasimu Z, Cai R, Meng F, Cui Q, Zhou Y, et al. NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells. Nucleic Acids Res. 2023;51:8514–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang JZ, Belbachir N, Zhang T, Liu Y, Shrestha R, Wu JC. Effects of cryopreservation on human induced pluripotent stem cell-derived cardiomyocytes for assessing drug safety response profiles. Stem Cell Rep. 2021;16:168–81.

    Article  CAS  Google Scholar 

  28. Yang H, Yang Y, Lu Z, Zhang JZ. Simultaneous optical imaging of action potentials and calcium transients in human induced pluripotent stem cell-derived cardiomyocytes. Curr Protoc. 2024;4:e1101.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Jia L, Chen X, Dong Y, Ren X, Dong Y, et al. Islet α-cell inflammation induced by NF-κB inducing kinase (NIK) leads to hypoglycemia, pancreatitis, growth retardation, and postnatal death in mice. Theranostics. 2018;8:5960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia L, Jiang Y, Li X, Chen Z. Purbeta promotes hepatic glucose production by increasing Adcy6 transcription. Mol Metab. 2020;31:85–97.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Wang Y, Ding K, Li Z, Zhang Z, Li X, et al. YTHDC1 promotes postnatal brown adipose tissue development and thermogenesis by stabilizing PPARγ. EMBO J. 2025;44:3360–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Li X, Liu C, Li Z, Ding K, Wang Y, et al. YTHDC1 is essential for postnatal liver development and homeostasis. Adv Sci. 2025:e05725.

  33. Gaidatzis D, Burger L, Florescu M, Stadler MB. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol. 2015;33:722–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH, Viero G. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput. Biol. 2018;14:e1006169.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chothani S, Adami E, Ouyang JF, Viswanathan S, Hubner N, Cook SA, et al. deltaTE: detection of translationally regulated genes by integrative analysis of ribo-seq and RNA-seq data. Curr Protoc Mol Biol. 2019;129:e108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun. 2018;9:4435.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genom. 2018;19:812.

    Article  CAS  Google Scholar 

  39. Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, et al. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res. 2014;104:15–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wei R, Cui X, Min J, Lin Z, Zhou Y, Guo M, et al. NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharm Sin B. 2022;12:3313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science. 2022;377:eabo1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaffin M, Papangeli I, Simonson B, Akkad AD, Hill MC, Arduini A, et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature. 2022;608:174–80.

    Article  CAS  PubMed  Google Scholar 

  43. Qu Z, Pang X, Mei Z, Li Y, Zhang Y, Huang C, et al. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol. 2024;72:103145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai K, Jaguva Vasudevan AA, Martinez Campos C, Emery A, Swanstrom R, Cullen BR. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe. 2020;28:306–312.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu C, Chen Y, Luo H, Lin W, Lin X, Jiang Q, et al. NAT10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J. 2024;46:288–304.

Download references

Acknowledgements

We thank Novogene and DIATRE Biotechnology for assistance in RNA-seq, RIP-seq and Ribo-seq experiments, respectively.

Funding

This study was supported by the National Natural Science Foundation of China Grants (82525015, 32371198 and 82370861), the Heilongjiang Chunyan Team (CYCX24020), Frontiers Science Center for Matter Behave in Space Environment and the Fundamental Research Funds for the Central Universities (HIT.OCEF.2025001), Doctor of excellence program (DEP) at the First Hospital of Jilin University (JDYY-DEP-2024040).

Author information

Authors and Affiliations

Contributions

LS performed most of the experiments and analyzed the data. MZ performed the experiments. HY, SH and JZ performed the iPSC-CM experiments and analyzed the data. XL performed RIP-seq experiments. YC helped to analyze the RNA-seq data. MG provided Nat10flox/flox mice and reviewed this study. ZZ and ZL guided this study. ZC conceived and designed the project, researched data, and wrote the manuscript. All authors give their consent for the publication of the above manuscript.

Corresponding authors

Correspondence to Minghui Gao, Zhiguo Zhang, Joe Z. Zhang, Zhuo Li or Zheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Institutional Animal Care and Use Committee or Animal Experimental Ethics Committee of Harbin Institute of Technology (HIT/IACUC-2022066). All authors complied with all relevant ethical regulations for animal testing and research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhang, M., Yang, H. et al. NAT10 regulates heart development and function by maintaining the expression of genes related to fatty acid β-oxidation and heart contraction. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01577-6

Search

Quick links