Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NLRP3 autophagic degradation disruption in melanocytes contributes to vitiligo development

Abstract

NLRP3 functions as a critical intracellular danger sensor for inflammasome activation, playing a crucial role in autoimmune diseases. Vitiligo progression has been linked to NLRP3, yet its specific involvement in melanocytes of vitiligo remains poorly understood. In this study, we demonstrate that NLRP3 expression is significantly upregulated in the melanocytes of vitiligo patients and melanoma-Treg-induced vitiligo mouse model. Genetic knockout of NLRP3 effectively alleviates vitiligo progression in these mice. Our mechanistic investigations reveal that the downregulation of the E3 ligase β-TrCP1 in vitiligo melanocytes decreases K27-linked ubiquitination levels of NLRP3, which in turn weakens its interaction with the autophagy receptor NDP52. This disruption impairs the selective autophagic degradation of NLRP3, leading to hyperactivation of inflammation and pyroptosis in melanocytes, thereby accelerating vitiligo pathogenesis. Notably, melanocyte-specific knockdown of NLRP3 using lysine-proline-valine (KPV)-modified deformable liposomes (KPV-Lipos) carrying Nlrp3 shRNA significantly alleviates vitiligo development. This study elucidates the mechanism by which autophagy dysfunction mediated excessive NLRP3 inflammasome activation in melanocytes contributes to vitiligo pathogenesis, highlighting potential therapeutic strategies targeting these pathways for the treatment of vitiligo and other pigment-related skin diseases.

Overview of disrupted NLRP3 autophagic degradation in vitiligo melanocytes. In healthy melanocytes, NLRP3 expression is upregulated when subjected to oxidative stress, along with an increase in the E3 ligase β-TrCP1, which enhances the K27-linked ubiquitination of NLRP3 and further strengthens its binding to the autophagy receptor protein NDP52, thus effectively suppressing the excessive inflammatory response. Whereas in the melanocytes of vitiligo patients, decreased expression of β-TrCP1 leads to downregulation of K27-linked ubiquitination in NLRP3, thus inhibiting its autophagic degradation. The persistent activation of NLRP3 in vitiligo melanocytes promotes the cleavage of pro-IL-1β and GSDMD. GSDMD-N subsequently forms pores on the cell membrane, which causes the release of IL-1β and results in melanocyte pyroptosis. In our study, we utilize KPV-Lipos with Nlrp3 shRNA to precisely knockdown NLRP3 expression in melanocytes and effectively alleviate vitiligo development, which provide a potentially promising strategy for the treatment of vitiligo. MC, melanocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NLRP3 expression is enhanced as vitiligo progresses.
Fig. 2: The NLRP3 inflammasome exhibits high levels of expression and activation in PIG3V.
Fig. 3: Autophagic degradation of NLRP3 is impaired in PIG3V.
Fig. 4: Downregulation of β-TrCP1 results in impaired K27-linked ubiquitination of NLRP3 in PIG3V.
Fig. 5: KPV-Lipo carrying shNlrp3 specifically targets melanocytes.
Fig. 6: Melanocyte-specific knockdown of Nlrp3 alleviates vitiligo progression induced by B16F10.

Similar content being viewed by others

Data availability

We declare that all the data and materials are available upon request.

References

  1. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. Lancet. 2015;386:74–84.

    Article  PubMed  Google Scholar 

  2. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu Z, Chen D, Hu Y, Jiang K, Huang H, Du Y, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature. 2021;601:118–24.

    Article  PubMed  Google Scholar 

  4. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129:2220–32.

    Article  PubMed  Google Scholar 

  5. Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, Steinberg SM, et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci Immunol. 2017;2:eaam6346.

  6. Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, Marquardt N, et al. CD49a expression defines tissue-resident CD8(+) T cells poised for cytotoxic function in human skin. Immunity. 2017;46:287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C, Boukhedouni N, et al. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J Invest Dermatol. 2018;138:355–64.

    Article  CAS  PubMed  Google Scholar 

  8. Gellatly KJ, Strassner JP, Essien K, Refat MA, Murphy RL, Coffin-Schmitt A, et al. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T(reg) function. Sci Transl Med. 2021;13:eabd8995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsueh YC, Wang Y, Riding RL, Catalano DE, Lu YJ, Richmond JM, et al. A keratinocyte-tethered biologic enables location-precise treatment in mouse vitiligo. J Invest Dermatol. 2022;142:3294–303.

    Article  CAS  PubMed  Google Scholar 

  10. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15:713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. Embo j. 2021;40:e108863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiao Z, Wang X, Xiang L, Zhang C. Dysfunction of autophagy: a possible mechanism involved in the pathogenesis of vitiligo by breaking the redox balance of melanocytes. Oxid Med Cell Longev. 2016;2016:3401570.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275:206–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356:768–74.

    Article  CAS  PubMed  Google Scholar 

  15. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q, et al. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med. 2020;217:e20182091.

  17. Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 2016;7:13727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han S, Lear TB, Jerome JA, Rajbhandari S, Snavely CA, Gulick DL, et al. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 Ligase. J Biol Chem. 2015;290:18124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160:62–73.

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Kang P, Zhang W, Jian Z, Zhang Q, Yi X, et al. Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T-cell response in patients with vitiligo. J Allergy Clin Immunol. 2020;145:632–45.

    Article  CAS  PubMed  Google Scholar 

  21. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, Ma J, Li W, Liu Q, Qin X, Qian Y, et al. The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome. Immunity. 2023;56:753–67.e8.

    Article  CAS  PubMed  Google Scholar 

  23. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91.

    Article  CAS  PubMed  Google Scholar 

  24. Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res. 2020;30:315–27.

    Article  PubMed  PubMed Central  Google Scholar 

  25. He Y, Li S, Zhang W, Dai W, Cui T, Wang G, et al. Dysregulated autophagy increased melanocyte sensitivity to H(2)O(2)-induced oxidative stress in vitiligo. Sci Rep. 2017;7:42394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun. 2017;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023;24:167–85.

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, et al. TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep. 2016;16:1988–2002.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  CAS  PubMed  Google Scholar 

  30. Akther M, Haque ME, Park J, Kang TB, Lee KH. NLRP3 ubiquitination-a new approach to target NLRP3 inflammasome activation. Int J Mol Sci 2021;22:8780.

  31. Sun MC, Xu XL, Du Y, Lou XF, Wang W, You YC, et al. Biomimetic melanosomes promote orientation-selective delivery and melanocyte pigmentation in the H(2)O(2)-induced vitiligo mouse model. ACS Nano. 2021;15:17361–74.

    Article  CAS  PubMed  Google Scholar 

  32. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carr Syst. 1996;13:257–388.

    Article  CAS  Google Scholar 

  33. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 Family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol. 2019;10:1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Li M, Li X, Feng Z, Luo G, Wang Y, et al. Glutamine metabolism modulates microglial NLRP3 inflammasome activity through mitophagy in Alzheimer’s disease. J Neuroinflam. 2024;21:261.

    Article  Google Scholar 

  35. Jiang H, Xie Y, Hu Z, Lu J, Zhang J, Li H, et al. VANGL2 alleviates inflammatory bowel disease by recruiting the ubiquitin ligase MARCH8 to limit NLRP3 inflammasome activation through OPTN-mediated selective autophagy. PLoS Biol. 2025;23:e3002961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang S, Li M, Lian G, Wu Y, Cui J, Wang L. ABHD8 antagonizes inflammation by facilitating chaperone-mediated autophagy-mediated degradation of NLRP3. Autophagy. 2025;21:338–51.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18:2114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci. 2024;354:122951.

    Article  CAS  PubMed  Google Scholar 

  39. Xu T, Yu W, Fang H, Wang Z, Chi Z, Guo X, et al. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. Cell Death Differ. 2022;29:1582–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49:331–8.

    Article  CAS  PubMed  Google Scholar 

  41. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287:36617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nie L, Fei C, Fan Y, Dang F, Zhao Z, Zhu T, et al. Consecutive palmitoylation and phosphorylation orchestrates NLRP3 membrane trafficking and inflammasome activation. Mol Cell. 2024;84:3336–53.e7.

    Article  CAS  PubMed  Google Scholar 

  43. Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023;53:e2350382.

  44. Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, et al. UFMylation of NLRP3 prevents its autophagic degradation and facilitates inflammasome activation. Adv Sci. 2025;12:e2406786.

    Article  Google Scholar 

  45. Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev. 2022;51:3487–534.

    Article  PubMed  Google Scholar 

  46. Hang Y, Tan L, Chen Q, Liu Q, Jin Y. E3 ubiquitin ligase TRIM24 deficiency promotes NLRP3/caspase-1/IL-1β-mediated pyroptosis in endometriosis. Cell Biol Int. 2021;45:1561–70.

    Article  CAS  PubMed  Google Scholar 

  47. Shen J, Wu Q, Liang T, Zhang J, Bai J, Yuan M, et al. TRIM40 inhibits IgA1-induced proliferation of glomerular mesangial cells by inactivating NLRP3 inflammasome through ubiquitination. Mol Immunol. 2021;140:225–32.

    Article  CAS  PubMed  Google Scholar 

  48. Humphries F, Bergin R, Jackson R, Delagic N, Wang B, Yang S, et al. The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nature Communications 2018;9:1560.

  49. Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021;12:2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He Y, Jiang X, Duan L, Xiong Q, Yuan Y, Liu P, et al. LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway. Mol Cancer. 2021;20:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie W, Jiang Q, Wu X, Wang L, Gao B, Sun Z, et al. IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death Differ. 2022;29:1528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 2019;26:306–20.

    Article  CAS  PubMed  Google Scholar 

  53. Fuchs SY, Spiegelman VS, Kumar KG. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene. 2004;23:2028–36.

    Article  CAS  PubMed  Google Scholar 

  54. Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of beta-TrCP1/2 in carcinogenesis. FEBS J. 2021;288:3351–74.

    Article  CAS  PubMed  Google Scholar 

  55. Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun. 2020;11:6042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol. 2011;31:2462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Palazón-Riquelme P, Worboys JD, Green J, Valera A, Martín-Sánchez F, Pellegrini C, et al. USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep 2018;19:e44766.

  58. Cai B, Zhao J, Zhang Y, Liu Y, Ma C, Yi F, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3. Autophagy. 2022;18:990–1004.

    Article  CAS  PubMed  Google Scholar 

  59. Hai B, Mao T, Du C, Jia F, Liu Y, Song Q, et al. USP14 promotes pyroptosis of human annulus fibrosus cells derived from patients with intervertebral disc degeneration through deubiquitination of NLRP3. Acta Biochim Biophys Sin. 2022;54:1–11.

    Article  Google Scholar 

  60. Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farres J, Kirkin V, et al. Targeting autophagy in disease: established and new strategies. Autophagy. 2022;18:473–95.

    Article  CAS  PubMed  Google Scholar 

  61. Cui T, Wang Y, Song P, Yi X, Chen J, Yang Y, et al. HSF1-dependent autophagy activation contributes to the survival of melanocytes under oxidative stress in vitiligo. J Invest Dermatol. 2022;142:1659–69.e4.

    Article  CAS  PubMed  Google Scholar 

  62. Qiao Z, Xu Z, Xiao Q, Yang Y, Ying J, Xiang L, et al. Dysfunction of ATG7-dependent autophagy dysregulates the antioxidant response and contributes to oxidative stress-induced biological impairments in human epidermal melanocytes. Cell Death Discov. 2020;6:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang D, Zhang Y, Pan J, Cao J, Sun X, Li X, et al. Degradation of NLRP3 by p62-dependent-autophagy improves cognitive function in Alzheimer’s disease by maintaining the phagocytic function of microglia. CNS Neurosci Ther 2023;29:2826–42.

  64. Wang Y, Li S, Li C. Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clin Rev Allergy Immunol. 2021;61:299–323.

    Article  CAS  PubMed  Google Scholar 

  65. Richmond JM, Bangari DS, Essien KI, Currimbhoy SD, Groom JR, Pandya AG, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J Invest Dermatol. 2017;137:350–8.

    Article  CAS  PubMed  Google Scholar 

  66. Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res. 2022;35:6–17.

    Article  CAS  PubMed  Google Scholar 

  67. Felsten LM, Alikhan A, Petronic-Rosic V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J Am Acad Dermatol. 2011;65:493–514.

    Article  PubMed  Google Scholar 

  68. Whitton ME, Pinart M, Batchelor J, Leonardi-Bee J, González U, Jiyad Z, et al. Interventions for vitiligo. Cochrane Database Syst Rev 2015;2015:Cd003263.

  69. Speeckaert R, van Geel N. Vitiligo: an update on pathophysiology and treatment options. Am J Clin Dermatol. 2017;18:733–44.

    Article  PubMed  Google Scholar 

  70. Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296:1636–9.

    Article  CAS  PubMed  Google Scholar 

  71. Le Gal FA, Avril MF, Bosq J, Lefebvre P, Deschemin JC, Andrieu M, et al. Direct evidence to support the role of antigen-specific CD8(+) T cells in melanoma-associated vitiligo. J Invest Dermatol. 2001;117:1464–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chunying Li (Xijing Hospital, Fourth Military Medical University) for providing PIG1 and PIG3V cells and Dr. Jun Cui (Sun Yat-sen University) for providing plasmids for p62, NDP52, Tollip and OPTN.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82572009, 82473549, 82371761, and 82171741), National Key R&D Program of China (2024YFC2309700), Guangdong Basic and Applied Basic Research Foundation (2023A1515010421), Science and Technology Program of Guangzhou (2025A04J7166), Zhejiang Provincial Natural Science Foundation of China (LY23H110001), and The Hangzhou Medical Key Discipline Construction Project ([2025]36-7).

Author information

Authors and Affiliations

Contributions

Ke Zeng, Yuqi Zhu and Zhongxin Han designed the study, performed the major experiments and analyzed data. Siyi Xiong, Yan Zhao, Zilong Xiao, Yingchao Xie, Weiwei Liu and Yongzhong Du provided technique support in some experiments. Ke Zeng, Yuqi Zhu and Zhongxin Han wrote the original manuscript. Xiao Yu and Cuiping Guan edited the manuscript. Shiyu Jin, Tingru Dong and Lan Lan performed some animal experiments. Xiao Yu, Cuiping Guan and Xiuzu Song supervised all experiments and verified the experimental data.

Corresponding authors

Correspondence to Cuiping Guan, Xiao Yu or Xiuzu Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. Animal (mice) procedures were approved by Southern Medical University Animal Care and Use Committee (Protocol number: L2019043). Human tissue collection and subsequent studies were approved by the ethics committee of Hangzhou Third People’s Hospital, Hangzhou, China, and informed consent was obtained from all patients prior to participation. (Protocol number: 2022KA007).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, K., Zhu, Y., Han, Z. et al. NLRP3 autophagic degradation disruption in melanocytes contributes to vitiligo development. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01578-5

Search

Quick links