Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM24-mediated K27-linked ubiquitination of ULK1 alleviates energy stress-induced autophagy and promote prostate cancer growth in the context of SPOP mutation

Abstract

SPOP, the most frequently mutated gene in prostate cancer, has been implicated in the aberrant activation of stress granules, presenting significant challenges in disease management. However, the mechanistic link between SPOP mutations and cellular energy stress remains inadequately explored. In this study, we demonstrate that ULK1 expression is positively correlated with both loss-of-function mutations in SPOP and the upregulation of the E3 ubiquitin ligase TRIM24 in human prostate cancer specimens. Mechanistically, SPOP mutations induce the upregulation of TRIM24, which subsequently binds to ULK1 and catalyzes its non-degradative K27-linked polyubiquitylation. This post-translational modification enhances the stability of ULK1, facilitating cellular adaptation to energy stress and consequently promoting prostate cancer progression. Notably, pharmacological inhibition of TRIM24 using TRIM24-PROTAC (proteolysis-targeting chimera) effectively suppressed tumor growth in mice bearing SPOP-mutant prostate cancer cells. Collectively, these findings elucidate a pivotal role of SPOP mutations in modulating energy stress responses via TRIM24-mediated ULK1 ubiquitylation and underscore the therapeutic potential of targeting TRIM24 in SPOP-mutant prostate cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPOP mutation facilitates autophagy under energy stress in prostate cancer.
Fig. 2: Regulation of ULK1 stability by SPOP mutation and TRIM24 expression.
Fig. 3: TRIM24 enhances ULK1 stability through interaction in SPOP-mutated prostate cancer.
Fig. 4: TRIM24’s B-box Domain Interacts with ULK1’s Spacer/CTD Domain to Mediate Polyubiquitylation.
Fig. 5: Disrupting SPOP mutation effects: therapeutic potential of dTRIM24 PROTAC in prostate cancer.
Fig. 6: Reduction of prostate carcinoma growth by dTRIM24 under energy-stressed conditions.
Fig. 7: The schematic diagram of the SPOP/TRIM24/ULK1 regulatory pathway.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Huang J, Chan EO, Liu X, Lok V, Ngai CH, Zhang L, et al. Global trends of prostate cancer by age, and their associations with gross domestic product (GDP), human development index (HDI), smoking, and alcohol drinking. Clin Genitourin Cancer. 2023;21:e261–70.e50.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    PubMed  Google Scholar 

  4. Zhang Y, Chen XN, Zhang H, Wen JK, Gao HT, Shi B, et al. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ. 2023;30:2462–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387:70–82.

    Article  PubMed  Google Scholar 

  6. Li J, Zhang T, Ren T, Liao X, Hao Y, Lim JS, et al. Oxygen-sensitive methylation of ULK1 is required for hypoxia-induced autophagy. Nat Commun. 2022;13:1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao M, Zhao J, Wang Q, Liu J, Ma L. Recent advances of degradation technologies based on PROTAC mechanism. Biomolecules. 2022;12:1257.

  8. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Prim. 2021;7:9.

    Article  PubMed  Google Scholar 

  9. Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer. 2020;19:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, et al. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J. 2016;35:1254–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  13. Jiang Q, Zheng N, Bu L, Zhang X, Zhang X, Wu Y, et al. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Mol Cancer. 2021;20:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding G, Sun J, Jiang L, Gao P, Zhou Q, Wang J, et al. Key pathways in prostate cancer with SPOP mutation identified by bioinformatic analysis. Open Med. 2020;15:1039–47.

    Article  CAS  Google Scholar 

  15. An J, Wang C, Deng Y, Yu L, Huang H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 2014;6:657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Song Y, Ye M, Dai X, Zhu X, Wei W. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 2020;17:339–50.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23:1055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–5.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu H, Ren S, Bitler BG, Aird KM, Tu Z, Skordalakes E, et al. SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep. 2015;13:1183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi Q, Zhu Y, Ma J, Chang K, Ding D, Bai Y, et al. Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol Cancer. 2019;18:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Chen M, Zhu Y, Dai X, Dang F, Ren J, et al. SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression. Dev Cell. 2019;48:329–44.e5.

    Article  CAS  PubMed  Google Scholar 

  22. Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016;30:1913–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu Q, Tian AL, Durand S, Aprahamian F, Nirmalathasan N, Xie W, et al. Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy. Cell Death Dis. 2020;11:1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Q, Tian AL, Kroemer G, Kepp O. Autophagy induction by IGF1R inhibition with picropodophyllin and linsitinib. Autophagy. 2021;17:2046–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, et al. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy. 2017;13:506–21.

    Article  CAS  PubMed  Google Scholar 

  26. Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res. 2022;41:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014;11:508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14:207–15.

    Article  CAS  PubMed  Google Scholar 

  29. Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 2009;5:649–62.

    Article  CAS  PubMed  Google Scholar 

  31. Gammoh N, Florey O, Overholtzer M, Jiang X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat Struct Mol Biol. 2013;20:144–9.

    Article  CAS  PubMed  Google Scholar 

  32. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15:741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, Zhu Y, Zhou S, Tang P, Xu R, Zhang Y, et al. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis. EMBO J. 2022;41:e109777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, Chen HA, et al. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol Cell. 2016;61:84–97.

    Article  CAS  PubMed  Google Scholar 

  37. Gao K, Shi Q, Liu Y, Wang C. Enhanced autophagy and NFE2L2/NRF2 pathway activation in SPOP mutation-driven prostate cancer. Autophagy. 2022;18:2013–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi Q, Jin X, Zhang P, Li Q, Lv Z, Ding Y, et al. SPOP mutations promote p62/SQSTM1-dependent autophagy and Nrf2 activation in prostate cancer. Cell Death Differ. 2022;29:1228–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell. 2016;29:846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci USA. 2013;110:6997–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 2014;74:5631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Theurillat JP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science. 2014;346:85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng Y, Klionsky DJ. Downregulation of autophagy through CUL3-KLHL20-mediated turnover of the ULK1 and PIK3C3/VPS34 complexes. Autophagy. 2016;12:1071–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei X, Fried J, Li Y, Hu L, Gao M, Zhang S, et al. Functional roles of speckle-type poz (SPOP) protein in genomic stability. J Cancer. 2018;9:3257–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fan Y, Hou T, Dan W, Zhu Y, Liu B, Wei Y, et al. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Cell Death Differ. 2022;29:1611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98:8554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burke MR, Smith AR, Zheng G. Overcoming cancer drug resistance utilizing PROTAC technology. Front Cell Dev Biol. 2022;10:872729.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen X, Shen H, Shao Y, Ma Q, Niu Y, Shang Z. A narrative review of proteolytic targeting chimeras (PROTACs): future perspective for prostate cancer therapy. Transl Androl Urol. 2021;10:954–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jia X, Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed Pharmacother. 2023;158:114112.

    Article  CAS  PubMed  Google Scholar 

  52. Yan W, Shi X, Wang H, Liao A, Yang W. Aberrant SPOP-CHAF1A ubiquitination axis triggers tumor autophagy that endows a therapeutical vulnerability in diffuse large B cell lymphoma. J Transl Med. 2022;20:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jamali L, Moradi A, Ganji M, Ayati M, Kazeminezhad B, Fazeli Attar Z, et al. Potential prognostic role for SPOP, DAXX, RARRES1, and LAMP2 as an autophagy related genes in prostate cancer. Urol J. 2020;17:156–63.

    PubMed  Google Scholar 

  54. Guo D, Yu Q, Tong Y, Qian X, Meng Y, Ye F, et al. OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth. Mol Cell. 2025;85:843–56.e6.

    Article  CAS  PubMed  Google Scholar 

  55. Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P, et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol Cell. 2015;59:917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to Cosmos Wisdom Company for their generous support and invaluable assistance throughout this research. The company’s technical support significantly contributed to the completion of this study. We deeply appreciate them for their support.

Funding

This work was supported by the National Natural Science Foundation of China (82372806 to LM, 82203450 to YZ, 82125026 to HR, 82472667 to ZY, 82188102 and 82030074 to ZL), the Ministry of Science and Technology of the People’s Republic of China (2020YFA0803300, ZL), the Natural Science Foundation of Shandong Province, China (ZR2021MC039 to LM), the Taishan Scholar Foundation of Shandong Province (tsqn202312378 to QW), Taishan Scholars Young Experts Project (tsqn202312380 to ZY) and Qingdao Key Clinical Specialty Elite Discipline. This work was supported by the Shanghai Sailing Program to YZ (20YF1448100 to YZ) and grants from the Science and Technology Commission of Shanghai Municipality (22Y11905200 to YZ).

Author information

Authors and Affiliations

Authors

Contributions

LM, YZ, DW, JLiu, QW, ZL, and HR. conceived and designed the study; LM, JLin, DW, QW, ZY, QL, SC, XL, WF, JZ, SY, ZW, XQ, YW, YQ, YC, and YX performed the experiments; JLiu, DW, YZ, and JLin performed the statistical analysis and wrote the original draft. LM, YZ, and HR contributed to the final draft. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Zhimin Lu, He Ren, Yasheng Zhu or Leina Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The studies involving human participants were reviewed and approved by the Institute Review Board of Shanghai Changhai Hospital. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lin, J., Yang, Z. et al. TRIM24-mediated K27-linked ubiquitination of ULK1 alleviates energy stress-induced autophagy and promote prostate cancer growth in the context of SPOP mutation. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01582-9

Search

Quick links