Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP2 promotes metabolic dysfunction-associated steatotic liver disease progression via stabilization of PPARγ

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease worldwide, yet the molecular mechanisms underlying its pathogenesis are not fully understood. Here, we identify the deubiquitinating enzyme Ubiquitin-specific protease 2 (USP2) as a key regulator in hepatic lipid metabolism and MASLD progression. We show that USP2 expression is significantly upregulated in liver tissues from MASLD patients and high-fat diet (HFD)-induced mouse models. Usp2 knockout or pharmacological inhibition alleviates hepatic steatosis and improves systemic metabolic parameters both in vivo and in vitro. Strikingly, hepatocyte-targeted GalNAc-conjugated siRNA against Usp2 markedly attenuates MASLD in mouse models, highlighting therapeutic potential. Mechanistically, USP2 directly interacts with and stabilizes peroxisome proliferator-activated receptor γ (PPARγ) by removing K48-linked ubiquitin chains at lysine 161 within its DNA-binding domain, thereby preventing proteasomal degradation and enhancing its transcriptional activity. This USP2-PPARγ axis promotes hepatic lipid accumulation and drives MASLD progression. Our findings uncover a novel regulatory mechanism in MASLD pathogenesis and suggest that USP2 may represent a promising and druggable therapeutic target for metabolic liver disease.

Highlights

  • USP2 expression is significantly upregulated in liver tissues from both MASLD patients and HFD-induced mouse models.

  • Hepatocyte-specific knockout of Usp2 protects mice from hepatic steatosis and improves metabolic parameters.

  • USP2 stabilizes PPARγ by removing K48-linked ubiquitin chains at lysine 161, thereby promoting lipid accumulation.

  • GalNAc-siRNAs targeting hepatic Usp2 offer a promising treatment strategy for MASLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP2 expression is upregulated in MASLD.
Fig. 2: Hepatocyte-specific Usp2 knockout ameliorates MASLD.
Fig. 3: USP2 activity in liver is positively associated with PPARγ level.
Fig. 4: USP2 promotes lipid accumulation through PPARγ.
Fig. 5: USP2 directly interacts with PPARγ.
Fig. 6: USP2 increases the stability of PPARγ.
Fig. 7: USP2 deubiquitinates PPARγ by regulating its K48-linked ubiquitin chains.
Fig. 8: GalNAc-siRNAs targeting hepatic Usp2 alleviate diet-induced MASLD in mice.

Similar content being viewed by others

Data availability

The raw RNA-sequencing data have been submitted to the National Center for Biotechnologyinformation (accession number: PRJNA1280771). All data are available from the corresponding authors upon request.

References

  1. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56.

    Article  CAS  PubMed  Google Scholar 

  2. Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79:842–52.

    Article  PubMed  Google Scholar 

  3. Francque SM, Marchesini G, Kautz A, Walmsley M, Dorner R, Lazarus JV, et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3:100322.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allen AM, Younossi ZM, Diehl AM, Charlton MR, Lazarus JV. Envisioning how to advance the MASH field. Nat Rev Gastroenterol Hepatol. 2024;21:726–38.

    Article  PubMed  Google Scholar 

  5. Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024;36:1439–55.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Wang X, Lin J, Liu J, Wang K, Nie Q, et al. A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH. Cell Metab. 2024;36:1823–1838.e6-e6.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Zheng MH, Liu D, Lin Y, Song SJ, Chu ES, et al. A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis. Cell Metab. 2025;37:59–68.e3.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chui ZSW, Xue Y, Xu A. Hormone-based pharmacotherapy for metabolic dysfunction-associated fatty liver disease. Med Rev (2021). 2024;4:158–68.

    Article  PubMed  Google Scholar 

  10. Feng JN, Jin T. Hepatic function of glucagon-like peptide-1 and its based diabetes drugs. Med Rev (2021). 2024;4:312–25.

    Article  PubMed  Google Scholar 

  11. Keam SJ. Resmetirom: first approval. Drugs. 2024;84:729–35.

    Article  CAS  PubMed  Google Scholar 

  12. O’Leary K. Semaglutide treats MASH liver disease. Nat Med. 2025. https://doi.org/10.1038/d41591-025-00034-8.

  13. Pouly D, Chenaux S, Martin V, Babis M, Koch R, Nagoshi E, et al. USP2-45 is a circadian clock output effector regulating calcium absorption at the post-translational level. PLoS One. 2016;11:e0145155.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang S, Nie J, Jiang H, Li A, Zhong N, Tong W, et al. VCP enhances autophagy-related osteosarcoma progression by recruiting USP2 to inhibit ubiquitination and degradation of FASN. Cell Death Dis. 2024;15:788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–83.

    Article  CAS  PubMed  Google Scholar 

  16. Molusky MM, Li S, Ma D, Yu L, Lin JD. Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes. 2012;61:1025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Li M, Sheng W, Zhou W, Zhang Z, Ji G, et al. High dietary fructose drives metabolic dysfunction-associated steatotic liver disease via activating ubiquitin-specific peptidase 2/11β-hydroxysteroid dehydrogenase type 1 pathway in mice. Int J Biol Sci. 2024;20:3480–96.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep. 2017;9:322–9.

    PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Ma L, Chen F, Zhang S, Huang Z, Zheng X, et al. Raloxifene-driven benzothiophene derivatives: Discovery, structural refinement, and biological evaluation as potent PPARγ modulators based on drug repurposing. Eur J Med Chem. 2024;269:116325.

    Article  CAS  PubMed  Google Scholar 

  20. Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol. 2023;79:1302–16.

    Article  CAS  PubMed  Google Scholar 

  21. Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50–72.

    Article  CAS  PubMed  Google Scholar 

  22. Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res. 2024;96:101303.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Fu M, Cui T, Xiong C, Xu K, Zhong W, et al. Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci USA. 2004;101:10703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev. 2025;26:e13856.

    Article  CAS  PubMed  Google Scholar 

  25. Ning Z, Guo X, Liu X, Lu C, Wang A, Wang X, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun. 2022;13:2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu P, Song X, Chen Q, Cen L, Tang C, Yu C, et al. Ubiquitin-specific peptidase 25 ameliorates hepatic steatosis by stabilizing peroxisome proliferator-activated receptor alpha. J Biol Chem. 2024;300:107876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang DG, Kunz WS, Lei XJ, Zito E, Zhao T, Xu YC, et al. Selenium ameliorated oxidized fish oil-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid Redox Signal. 2024;40:433–52.

    Article  PubMed  Google Scholar 

  28. Lee KW, Cho JG, Kim CM, Kang AY, Kim M, Ahn BY, et al. Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem. 2013;288:32886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin L, Zhu W, Hu X, Ye L, Lou S, Zhang Q, et al. USP25 directly interacts with and deubiquitinates PPARα to increase PPARα stability in hepatocytes and attenuate high-fat diet-induced MASLD in mice. Cell Death Differ. 2025;32:1112–27.

    Article  CAS  PubMed  Google Scholar 

  30. Dai J, Zhang L, Zhang R, Ge J, Yao F, Zhou S, et al. Hepatocyte deubiquitinating enzyme OTUD5 deficiency is a key aggravator for metabolic dysfunction-associated steatohepatitis by disturbing mitochondrial homeostasis. Cell Mol Gastroenterol Hepatol. 2024;17:399–421.

    Article  CAS  PubMed  Google Scholar 

  31. Hu S, Wang Z, Zhu K, Shi H, Qin F, Zhang T, et al. USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination. Clin Mol Hepatol. 2025;31:147–65.

    Article  PubMed  Google Scholar 

  32. Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharm Ther. 2022;240:108298.

    Article  CAS  Google Scholar 

  33. Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med. 2020;24:2736–48.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang S, L Xiong, T Liao, L Li, Y Li, L. Kang, et al. Deubiquitinating enzyme USP2 alleviates muscle atrophy by stabilizing PPARγ. Diabetes. 2025;74:773–86.

  35. Luo H, Ji Y, Gao X, Liu X, Wu Y, Wu Y. Ubiquitin specific protease 2: structure, isoforms, cellular function, related diseases and its inhibitors. Oncologie. 2022;24:85–99.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82400092, 82470152), the Shandong Provincial Natural Science Foundation (ZR2024MH161), the Weifang Science and Technology Development Plan Project (Medical)(2025YX032), the China Postdoctoral Science Foundation (2023M742311, 2024M762019), and the Shanghai Jiao Tong University School of Medicine the 18th Training Program for Innovation and Entrepreneurship (1824010).

Author information

Authors and Affiliations

Contributions

HL and YW contributed to the literature search and study design. HL, YW, PH, and ZZ participated in the drafting of the article. HL, CZ, YW, YD, WB, YZ, YS, YZ, and WW carried out the experiments. YW, MH, YW, ZZ, HL, and HX revised the manuscript. PH, HC, and JW contributed to data collection and analysis. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Hao Luo or Yingli Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The collection and use of human samples were approved by the Ethics Committee of Shandong Second Medical University (Approval Number: SDSMU2024YX297) and strictly adhered to the principles of the Declaration of Helsinki. All participants or their close relatives signed written informed consent forms. All animal experiments were conducted with the approval of the Animal Ethics Committee of Shanghai Jiao Tong University School of Medicine (Approval Number: JUMC2023-027-A). All animal experiments were strictly conducted in accordance with institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhu, C., Wang, Y. et al. USP2 promotes metabolic dysfunction-associated steatotic liver disease progression via stabilization of PPARγ. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-025-01589-2

Search

Quick links