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A novel microRNA-182/Interleukin-8 regulatory axis controls
osteolytic bone metastasis of lung cancer
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Bone metastasis is one of the main complications of lung cancer and most important factors that lead to poor life quality and low
survival rate in lung cancer patients. However, the regulatory mechanisms underlying lung cancer bone metastasis are still poor
understood. Here, we report that microRNA-182 (miR-182) plays a critical role in regulating osteoclastic metastasis of lung cancer
cells. We found that miR-182 was significantly upregulated in both bone-metastatic human non-small cell lung cancer (NSCLC) cell
line and tumor specimens. We further demonstrated that miR-182 markedly enhanced the ability of NSCLC cells for osteolytic bone
metastasis in nude mice. Mechanistically, miR-182 promotes NSCLC cells to secrete Interleukin-8 (IL-8) and in turn facilitates
osteoclastogenesis via activating STAT3 signaling in osteoclast progenitor cells. Importantly, systemically delivered IL-8 neutralizing
antibody inhibits NSCLC bone metastasis in nude mice. Collectively, our findings identify the miR-182/IL-8/STAT3 axis as a key
regulatory pathway in controlling lung cancer cell-induced osteolytic bone metastasis and suggest a promising therapeutic strategy
that targets this regulatory axis to interrupt lung cancer bone metastasis.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death
worldwide, causing ~18% of cancer-related deaths [1]. More than
65% of lung cancer patients have local or distant metastasis at
diagnosis, with bone metastasis as the most prevalent malignant
clinical symptom [2]. In particular, approximately 30-40% of non-
small cell lung cancer (NSCLC) patients develop bone metastasis,
with an average survival rate of about 6 months [3, 4]. However,
effective intervention strategies for lung cancer bone metastasis
are still lacking due to a poor understanding of the regulatory
mechanisms.

Recent studies have advanced our understanding of the process
of breast and prostate cancer bone metastasis. Bone-metastatic
breast and prostate cancer cells are shown to secrete various
inflammatory factors or growth factors, including IL-11, IL-6, IL-8,
TGF-B, TNF, and EGF, and directly activate osteoclast progenitor
cells [5-8]. Moreover, recent studies on breast cancer cells report
that tumor-derived Jaggedl1 promotes osteoclast formation and
bone absorption by activating the Notch signaling pathway in
osteoclasts [9], while cancer cell secreted-IL-11 functions as a pro-
osteolytic factor by activating the JAK1/STAT3 pathway in
osteoclast progenitor cells [10, 11]. In addition, prostate cancer

cell-secreted PTHrP may stimulate the differentiation and matura-
tion of osteoclast cells by altering the homeostasis between the
osteoclastogenesis inducer RANKL and its decoy receptor
Osteoprotegerin  (OPG) in metastatic niches [12-15]. These
processes together promote osteoclast differentiation in meta-
static niches, thereby increasing osteolytic bone lesions and
facilitating the bone metastasis of breast and prostate cancer cells.
Similarly, more than 70% of lung cancer bone metastasis display
osteolytic bone destruction [16]. However, unlike recent advances
in our understanding of breast and prostate cancer bone
metastasis, how lung cancer bone metastasis is regulated remains
largely unexplored.

MicroRNAs (miRNAs) are known as an emerging class of post-
transcriptional gene regulators in eukaryotic cells, which have
been shown to play critical roles in all stages of tumor progression
[17, 18]. In particular, miRNAs play a critical role in modulating
cellular pathways implicated in osteolytic bone destruction and
expression of key cytokines and/or chemokines in bone micro-
environment [19-21]. For instance, overexpression of miR-155 in
RAW264.7 cells blocks osteoclastogenesis by repressing MITF and
PU.1, two crucial transcription factors for osteoclast differentiation
[22], while breast cancer cell-induced miR-141 and miR-219
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downregulation in osteoclasts promote osteoclast differentiation
and osteolytic bone metastasis [23]. Our recent study also showed
that NSCLC cell-derived exosomal miR-17-5p promote osteoclast
differentiation by targeting PTEN [24], but it has been largely
unknown whether and how miRNAs in lung cancer cells are
directly involved in regulating the osteolytic bone metastasis.

In the present study, we discovered that miR-182 acts as a
critical regulator in controlling lung cancer bone metastasis. This
miRNA was previously reported to regulate tumor occurrence,
progression, and distant metastasis in various types of cancers,
including melanoma [25], breast cancer [26], and lung cancer
[27, 28]. We found that miR-182 was upregulated in bone-
metastatic NSCLC cells and tumors and further showed that this
miRNA significantly promoted the osteolytic bone metastasis of
NSCLC cells in nude mice. Our mechanistic studies revealed that
miR-182 enhanced IL-8 expression in NSCLC cells by targeting the
NF-kB signaling inhibitor gene KLHL27 [29], and thus increased IL-8
secretion from NSCLC cells to facilitate osteoclastogenesis via
activating STAT3 signaling in osteoclast progenitor cells. Collec-
tively, our findings indicate the miR-182/IL-8/STAT3 cascade as a
novel regulatory axis in controlling osteoclast differentiation and
osteolytic lesion development in metastatic niches, providing new
mechanistic insights into lung cancer bone metastasis and
potential therapeutic targets for the treatment of lung cancer
bone metastasis.

MATERIALS AND METHODS

RNA oligonucleotides and plasmids

miR-182 mimics, anti-miR-182, and their cognate negative control RNAs
were purchased from RiboBio (Guangzhou, China). Human KLHL21 coding
sequences were cloned into the p3xFlag-CMV-14 expression vector
(Sigma) to construct p3xFlag-KLHL21. For reporter pRL-TK-KLHL21 3'-
untranslated region (3-UTR), the human KLHL21 3’-UTR was cloned
downstream of the Renilla luciferase gene in pRL-TK (Promega). Eight
nucleotides in KLHL21 3/-UTR corresponding to 5’ part of miR-182 were
deleted in the pRL-KLHL21 3/-UTR Mut construct. All constructs were
confirmed by DNA sequencing.

Cell lines, cell infection, and transfection

Human NSCLC cell line A549 and murine pre-osteoclast cell line RAW264.7
were obtained from the American Type Culture Collection (ATCC) and
cultured according to their guidelines. All cell lines have been
authenticated using STR profiling. Mycoplasma contamination testing
was performed and the cells were proved to be mycoplasma free.
A549 subline stably expressing luciferase (referred to as A549-luc) was
generated from the parental cell line, as previously reported [30, 311
Generation of the bone-metastatic A549 subline was carried out as
previously reported [10, 32]. In brief, A549-luc cells were inoculated into
the left cardiac ventricle of BALB/c athymic nude mice (6-8 weeks old), and
then the bone tissue-resided A549-luc cells were isolated from mouse
bones indicated by Bioluminescence imaging (BLI). After in vitro cultiva-
tion, the isolated A549-luc cells were administered again into the left
cardiac ventricle. After three cycles of selection, the obtained A549-luc
subline was defined as bone-metastatic subline (referred to as A549-BM;
Fig. S1A, B).

The pseudovirus of GV369-miR-182 and control viruses were purchased
from GENECHEM (Shanghai, China). NSCLC cells were infected with
indicated viruses and subjected to antibiotic selection for enrichment
before the assays. Cell transfection was performed using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instruction. For RNA
oligonucleotide transfection, 50 nmol/L of miRNA mimics and 100 nmol/L
of antisense oligonucleotides were used.

RNA isolation and real-time quantitative PCR (qPCR)

The assays were performed as we described previously [17, 18]. Total RNAs
were extracted from cells or tissues with TRIzol reagent (Invitrogen). miRNA
and mRNA levels were quantified by quantitative reverse transcription PCR
(gPCR) using SYBR Green (Takara), with U6 small nuclear RNA and B-actin
as internal normalized references, respectively. The qPCR results were
analyzed and shown as relative miRNA or mRNA levels of the CT (cycle
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threshold) values, which were then converted as fold change. The primer
sequences for qPCR were provided in Table S1.

Small RNA sequencing and transcriptome sequencing
analyses

For small RNA sequencing, total RNAs were isolated from cells or tissues
using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol.
The quantity and integrity of RNAs were assessed by using the K5500 and
the Agilent 2200 TapeStation (Agilent Technologies, USA), respectively.
Briefly, RNAs were ligated with 3’ RNA adapter, and followed by 5’ adapter
ligation. Subsequently, the adapter-ligated RNAs were subjected to RT-PCR
and amplified with a low cycle. Then the PCR products were size selected
by PAGE gel according to instructions of NEBNext® Multiplex Small RNA
Library Prep Set for lllumina® (Illumina, USA). The purified library products
were evaluated using the Agilent 2200 TapeStation. The libraries were
sequenced by HiSeq 2500 (lllumina, USA) with single-end 50 bp at Ribobio
Co. Ltd (Ribobio, China).

RNA sequencing and initial data analyses were conducted by LC
Sciences using illumina Novaseq™ 6000 and 2 X 150bp paired-end
sequencing. Gene Ontology (GO) annotations are based on UniProtBlast,
Entrez Gene, and Expasy Proteomic databases. Differential gene expression
was assessed through average reads of multiple RNA samples, with the
cutoff for differentially expressed genes set as fold change >1.5.

Immunoblotting and immunofluorescent assays

The assays were carried out as we recently described [17]. For detecting
protein levels in conditioned medium, the supernatants were collected,
quantified and denatured for western blot analysis as described previously
[33, 34]. The primary antibodies used in this study were the antibodies for
anti-p-STAT3 (9145T, Cell Signaling Technology), STAT3 (#4904, Cell
Signaling Technology), NFATc1 (sc-7294, Santa Cruz Biotechnology),
p-P65 (#3033, Cell Signaling Technology), P65 (#8242, Cell Signaling
Technology), p-ERK (#4370, Cell Signaling Technology), ERK (#4695, Cell
Signaling Technology), p-PI3K (#4228, Cell Signaling Technology), PI3K
(#4249, Cell Signaling Technology), B-actin (A3854; Sigma-Aldrich), IL-8
(MAB208-100, R&D Systems), IL-1 (AF-200-SP, R&D Systems), IL-12 (AF-219-
SP, R&D Systems), CXCL3 (MAB276-SP, R&D Systems), KLHL21(GTX120580,
GeneTex). Western blot images were captured using a Tanon 5200
chemiluminescent imaging system. Multiplex immunofluorescence stain-
ing was prepared as described previously [35]. Bone samples were
respectively stained with primary antibodies, including the antibodies for
p-STAT3 (9145T, Cell Signaling Technology), CTSK (ab300569, Abcam),
MMP9 (10375-2-AP, Proteintech), and CK8 (ab53280, Abcam). Biotinylated
secondary antibody was used with ABC Kit (ZSGB-BIO) and TSA detection
kit (Invitrogen) to indicate the positively stained cells, with nuclei
counterstained with DAPI (Sigma).

Histological analysis of bone tissues

The experiment was carried out as previously described [23]. In brief, the
dissected femurs were subjected to fixation in 4% paraformaldehyde for
48 h followed by decalcification through 2 weeks of incubation with daily
changed 15% tetrasodium EDTA. Thereafter, bone tissues were dehydrated
with a graded series of ethanol, immersed into xylene, paraffin-embedded,
and then cryo-sectioned in the coronal plane at a thickness of 8 um.

ELISA analysis

Quantitative levels of cytokines in the conditioned medium of cultured
cells were determined by ELISA according to the manufacturer’s protocol.
The ELISA kit are as follows: IL-8 (EK0413, Boster Biological Technology), IL-
12 (EKO421, Boster Biological Technology), IL-1 (EK0389, Boster Biological
Technology), CXCL3 (EK1364, Boster Biological Technology).

Bioluminescence imaging (BLI)

Bioluminescence imaging was performed as described previously [9, 11]. In
brief, tumor-bearing mice were anesthetized and then administered
intraperitoneally with D-Luciferin (75 mg/kg of body weight). After 10 min,
a Perkin Elmer IVIS Imaging System was employed to acquire biolumines-
cence images. The imaging acquisition time was set to 60 seconds initially
and decreased along with signal strength during the time course for
avoiding saturation. Measurement of the photon flux within the interested
region delineated around the BLI signals was conducted by using the
Living Image software.

Cell Death and Disease (2023)14:298



In vitro osteoclast differentiation and Tartrate-resistant acid
phosphatase (TRAP) staining

For RANKL treatment, RAW264.7 cells were treated with indicated
concentration of RANKL (Peprotech, 20 ng/ml) or Osteoprotegerin (OPG;
Peprotech, 20 ng/ml) with media changed every 2 days. For tumor-
conditioned media (CM), CM was collected from the sub-confluent cancer
cells with indicated treatments. The CM was passed through a 0.22 ym
filter before addition to RAW264.7 cells. For antibody blocking assay,
antibodies against IL-8 (R&D Systems, MAB208-100, 5 pg/mL), IL-1 (R&D
Systems, AF-200-SP, 5 ug/mL), IL-12 (R&D Systems, AF-219-SP, 5 ug/mL), or
CXCL3 (R&D Systems, MAB276-SP, 0.5 ug/mL) were respectively added to
the CM from miR-182-expressing A549 cells. For stimulation assay,
recombinant human IL-8, IL-1, IL-12, and CXCL3 proteins were respectively
added to the CM from A549 cells. RAW264.7 cells were cultured with the
indicated CM, using fresh CM replaced daily for 6 days. At the treatment
end, TRAP staining (Wako, Osaka, Japan) was performed to examine the
osteoclast differentiation. For cultured cells, TRAPT multi-nucleated cells
were scored as mature osteoclasts. For the bone metastatic tissue section,
the number of osteoclasts in metastatic niches was assessed as TRAP™ cells
along the tumor-bone interface and presented as the number/mm of
interface.

Bone metastasis assay and therapeutic experiments

Both intracardiac (IC) injection and intrailiac artery (llA) injection were used
to generate the mouse model for NSCLC bone metastasis. For IC injection,
5 x 10° NSCLC cells suspended in PBS were injected into the left ventricle
of anesthetized BALB/c athymic nude mice (6-8 weeks old) as described
previously [9, 36]. For IIA injection, 1 x 10° NSCLC cells suspended in PBS
were injected into external iliac artery using 31 G needles as described
previously [37, 38]. For IL-8 neutralizing antibodies treatment, 3 days after
IIA injection of miR-182-overexpressing A549 cells, IL-8 neutralizing
antibodies (R&D Systems, MAB208-100) or IgG (R&D Systems, 1-100-A) in
PBS (0.1 mg/mouse) were administrated intravenously twice a week for
three consecutive weeks (Fig. 6A). Tumor burden was measured by
Bioluminescence imaging (BLI) after the completion of treatment. Animals
were then sacrificed and the hindlimbs were resected and subjected to
histological and morphometric analyses. Hindlimbs bearing metastatic
tumors were scanned using a Micro-CT scanner (Model 1272; Skyscan) for
detecting bone damage. Five mice were included for each experimental
group, and each experiment was repeated 3 times.

Statistical analyses

Data were shown as mean+SEM of three independent experiments
performed in triplicate. Comparison between paired treated groups and
controls was made using Student’s t test. P-values were compared
between the two groups with a value <0.05 (denoted by asterisks)
considered significant. Pearson’s correlation analysis was used to calculate
the correlation between the two groups. Kaplan-Meier survival analysis
was used to depict the survival of patients between different groups.

Study approval

Primary NSCLC tumor specimens, non-tumorous adjacent tissues and
metastatic bone specimens were collected during surgery from Shanghai
Chest Hospital Affiliated to Shanghai Jiao Tong University and Zhongshan
Hospital Affiliated to Fudan University (Shanghai, China) with written
informed consent from patients. The specimens were immediately
subjected to snap freezing followed by storage at —80°C. The sample
collection was approved by the Medical Ethical Committee of the hospitals.
All animal experiments were performed under the protocols approved by
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of
Sciences and in accordance with the Guide for the Care and Use of
Laboratory Animals (NIH publication nos. 80-23, revised 1996).

RESULTS

miR-182 is upregulated in bone-metastatic NSCLC cells and
tumors

To facilitate our studies of lung cancer bone metastasis, we first
established a murine model of bone metastasis as described
previously [10] and generated a bone-metastatic subline of
human NSCLC cell line A549 (referred to as A549-BM; Fig. S1A,
B). By bioluminescence imaging (BLI), we verified that A549-BM
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subline showed a much higher ability for bone metastasis in nude
mice relative to parental A549 cell line (Fig. 1A). Micro-CT scan
further showed much more serious bone damage in A549-BM cell-
implanted mice compared with controls (Fig. 1B). These results
together indicate that A549-BM subline is prone to bone
metastasis and causes osteolytic lesions similar to clinical
symptoms of lung cancer bone metastasis patients.

To gain new insights into the regulatory mechanisms under-
lying lung cancer bone metastasis, we performed small RNA
sequencing and found that a total of 17 abundantly expressed
miRNAs (read counts > 2000) were upregulated (fold-change
cutoff at 1.5) in A549-BM cells relative to the parental controls
(Fig. 1C). We next compared their expression in NSCLC tumor
specimens relative to adjacent normal lung tissue controls from
both StarBase and Cancer Genome Atlas (TCGA) databases, and
found that only 6 out of the 17 upregulated miRNAs in A549-BM
cells were elevated (fold change >1.5) in tumor tissues (Fig. 1D).
Among these, miR-182 stuck our attention, given that it is most
significantly elevated in NSCLC tumors relative to normal controls
(Fig. 1D). By qPCR, we further compared miR-182 expression in a
cohort of human NSCLC non-tumorous adjacent tissues, primary
tumors, and bone metastatic tumors, and found that miR-182
expression was significantly elevated in primary NSCLC tumors
and further elevated in metastatic bone tumors (Fig. 1E). These
results together imply that miR-182 might be involved in
regulating lung cancer bone metastasis.

Additionally, we found that the miR-182 level in primary tumors
from the patients with metastasis was significantly higher than
that from the patients without metastasis (Fig. S2A). By
Kaplan-Meier analysis, we found that patients with higher miR-
182 expression in tumors have significantly shorter overall survival
(Fig. S2B). Consistent with our findings, miR-182 expression is also
significantly elevated in melanoma and bladder tumors from
metastatic patients [25, 39]. These findings together suggest that
miR-182 might be considered as a potentially metastatic
biomarker of pan-cancers.

miR-182 promotes lung cancer bone metastasis in mice

To experimentally determine whether miR-182 is functionally
important for NSCLC cells to metastasize to bones, we elevated
miR-182 expression in parental A549 cells through infection with
miR-182-expressing lentivirus (Fig. S3A) and subsequently injected
the cells through the intracardiac route of BALB/c athymic nude
mice (Fig. S3B). 4 weeks post injection, our BLI identified a potent
increase of metastatic burden in both hindlimb bones and spines
in miR-182-overexpressing A549 cell-injected mice compared with
the negative control (NC) group (Fig. 2A). By micro-CT assay, we
found more severe osteolysis in miR-182-overexpressing A549
cell-injected mice compared with the NC group (Fig. 2B).
Moreover, Tartrate-resistant acid phosphatase (TRAP) staining
and immunohistochemical staining showed a marked increase of
osteoclasts at the tumor-bone boundary in the miR-182-
overexpressing metastatic tumors (Fig. 2C). By co-staining of
MMP9 and CTSK, and K8, we found that MMP9 level was elevated
in CTSK-positive cells at the tumor-bone boundary of the miR-182-
OE lesions compared with the control group (Fig. S3C), further
confirming the increase of osteoclastogenesis at the tumor-bone
boundary. These results together indicate that miR-182 over-
expression promotes the osteolytic bone metastasis of NSCLC cells
in nude mice, suggesting a functional role of miR-182 in regulating
lung cancer bone metastasis.

miR-182 promotes the NSCLC cell-induced osteoclast
differentiation

Our above results showed that administration of miR-182-
overexpressing NSCLC cells substantially enhanced osteolysis in
metastatic niches, leading us to hypothesize that miR-182 might
facilitate cancer cell-induced osteoclastogenesis. To test this

SPRINGER NATURE
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miR-182 is upregulated in bone-metastatic NSCLC cell line and tumor specimens. A, B Bioluminescence imaging (BLI, A) and micro-

CT (B) analyses of bone metastasis in A549 or A549-BM cell-injected mice. On 30 days post injection of A549 or A549-BM cells, the
bioluminescence signals in bone-metastatic tumors were detected by BLI (A), and bone damage was measured by micro-CT and quantified by
bone volume/tissue volume (BV/TV) (B). C, D Identification of candidate miRNAs critical for lung cancer bone metastasis. C Scatter plot
showing the relative expression of miRNAs in A549-BM cells compared with parental A549 cells, with the 17 upregulated and also abundantly
expressed miRNAs in A549-BM cells indicated in red. D Scatter plot showing the relative expression of the 17 miRNAs in NSCLC specimens
compared with adjacent normal lung tissues using StarBase and ATCG datasets, with P-value (FDR) in the Y-axis and highlighted significantly
elevated miRNAs. The vertical dashed lines indicated fold-change cutoff at 1.5. (E) Quantification of the miR-182 level in primary NSCLC
tumors (Primary tumor, n = 45), non-tumor lung tissues (Normal, n = 45), and bone metastatic tumors from NSCLC patients (Bone-met, n = 15)
using gPCR. The average values+SEM of three separate experiments are plotted. ***P < 0.001.

hypothesis, we cultured murine pre-osteoclast RAW264.7 cells in
conditioned media (CM) collected from NSCLC cells A549 or
H1299 infected with miR-182-expressing (miR-182-CM) or NC
lentivirus (NC-CM), respectively. As a positive control, RANKL, a
potent inducer of osteoclastogenesis [23], effectively drove
RAW264.7 cell differentiation into mature, multi-nucleated osteo-
clasts (Fig. S4A). Intriguingly, our ELISA assay showed a similar
level of RANKL in the CM from control A549, miR-182-
overexpressing A549, and A549-BM cells (Fig. S4B), but we found
that miR-182-CM, but not NC-CM, markedly induced the
differentiation of RAW264.7 cells into mature osteoclasts (Figs. 3A
and S4Q). Consistently, we found that the CM from A549-BM
cells, which have a higher endogenous miR-182 expression, was
much more effective in driving RAW264.7 cell differentiation
compared with that from parental A549 cells (Fig. 3B). These
results support a role of miR-182 in NSCLC cell-induced
osteoclastogenesis. To corroborate this, we inhibited miR-182
function in A549-BM cells by anti-miR-182 transfection. As
expected, inhibition of miR-182 function significantly overrode
the stimulatory effect of A549-BM CM on osteoclast differentiation
of RAW264.7 cells (Fig. 3C). Indeed, several key regulator genes for
osteoclast differentiation, including Ctsk, Nfatcl, Mitf, and Trap
were significantly upregulated in the miR-182-CM-treated
RAW264.7 cells and downregulated in the anti-miR-182-CM-
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treated cells compared with control treatment (Figs. 3D and
S4D). Moreover, we found that miR-182-CM treatment barely
altered the proliferation, apoptosis, and migration of RAW264.7
cells compared with control treatment (Fig. S4E-G). These results
together suggest that miR-182 is able to promote the NSCLC cell-
induced osteoclast differentiation.

miR-182 in NSCLC cells enhances IL-8 secretion and in turn
promotes osteoclast differentiation

We next asked how miR-182 in NSCLC cells stimulates the
differentiation of pre-osteoclast cells. Consistent with our observa-
tion of a similar level of RANKL in the CM from control A549 and
miR-182-overexpressing A549 (Fig. S4B), TRAP staining showed
that Osteoprotegerin (OPG), a decoy receptor for RANKL [40],
barely altered the stimulatory effect of miR-182-CM on osteoclast
differentiation (Fig. 4A). In sharp contrast, OPG effectively
attenuated the RANKL-induced RAW264.7 cell differentiation
(Fig. 4A). These results suggest that miR-182 in NSCLC cells drives
osteoclastogenesis in a RANKL-independent manner.

To further explore the molecular mechanisms underlying miR-
182 action on lung cancer bone metastasis, we next performed
transcriptome-seq analysis of the miR-182-expressing or NC
lentivirus-infected A549 cells. Pathway enrichment analysis of
differentially expressed genes revealed significant enrichment of
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of three separate experiments are plotted. ***P < 0.001.

cytokine and cancer-related pathways in the miR-182-
overexpressing A549 cells (Fig. 4B). In particular, several well-
known inflammatory factors in tumor microenvironment, includ-
ing IL-8, IL-1, IL-12, and CXCL3, were significantly elevated in the
miR-182-overexpressing cells relative to NC-infected cells (Fig. 4C).
Our gPCR confirmed that IL-8, IL-1, IL-12, and CXCL3 were
significantly upregulated in either miR-182-overexpressing A549
and H1299 cells (Fig. 4D) or endogenous miR-182 highly
expressing A549-BM cells (Fig. S5A). Moreover, both western
blotting and ELISA assays verified higher protein levels of these
cytokines in miR-182-CM relative to NC-CM (Fig. 4E, F). These
results together support that miR-182 facilitates the expression of
these cytokines in NSCLC cells. In line with this, we found higher
serum levels of these cytokines in miR-182-overexpressing A549
cell-injected mice compared with the control group (Fig. 4G). As
expected, miR-182 level was significantly elevated in the EVs
isolated from A549-BM cells, miR-182-overexpressing A549 cells or
the blood of mice injected with miR-182-overexpressing A549
cells compared with the respective controls (Fig. S5B-D). This
suggests that miR-182 could be used as a circulating biomarker for
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the early detection of bone metastasis. Collectively, these results
suggest IL-8, IL-1, IL-12, and CXCL3 as candidate effectors for miR-
182-CM action on osteoclastogenesis.

To examine whether these candidate effectors are functionally
required for miR-182-CM-induced osteoclastogenesis, we respec-
tively depleted them in the miR-182-CM via antibody blocking.
Interestingly, the neutralizing antibody for IL-8, but not those for
IL-1, IL-12, and CXCL3, effectively attenuated the stimulatory effect
of miR-182-CM on RAW264.7 cell differentiation (Fig. 4H).
Conversely, supplementation of recombinant IL-8, rather than
IL-1, IL-12, and CXCL3, in the CM from parental A549
cells, remarkedly promoted the differentiation of RAW264.7 cells
(Fig. 4H). These results suggest that IL-8 is an authentic effector
responsible for miR-182-CM-induced osteoclastogenesis. Consis-
tently, our ELISA assay confirmed that IL-8 level was potently
elevated in the CM form miR-182-expressing lentivirus-infected
A549 cells and reduced in the CM form anti-miR-182 transfeced-
A549-BM cells (Fig. S5E). These results together suggest that miR-
182 promotes osteoclast differentiation likely via enhancing
NSCLC cells to secrete IL-8 in the tumor microenvironment.
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miR-182 in NSCLC enhances IL-8 expression and secretion via
targeting KLHL21

We next asked how miR-182 enhances NSCLC cells to secrete IL-8.
To this end, we first used computational prediction programs [41,
42] to predict miR-182 targets. Interestingly, we found that
KLHL21, which encodes an inhibitor of NF-kB signaling pathway
[29], was predicted to be a target of miR-182 (Fig. 5A, top). Given
that NF-kB signaling has been well-known for its role in regulating
IL-8 expression [43, 44], we hypothesized that miR-182 might
elevate /L-8 expression in NSCLC cells via regulating the
KLHL21:NF-kB axis. To begin to test this hypothesis, we first
experimentally tested whether miR-182 regulates KLHL21. We
constructed luciferase reporters by cloning the wild-type 3'-
untranslated regions (UTR) of KLHL21 or its mutant version (with
deletion of the 8-bp sequence complementary to the 5’ sequence
of miR-182) downstream of the firefly luciferase cDNA in the pRL-
TK vector (Fig. 5A, bottom). We found that co-transfection of miR-
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182 mimics into 293T cells substantially decreased the luciferase
activity of the wild-type reporter but barely affected that of the
mutant reporter, suggesting that KLHL21 is a target of miR-182
(Fig. 5B). To corroborate this, we further examined the effect of
miR-182 on endogenous KLHL21 expression in A549 cells. Western
blot confirmed that KLHL21 protein level was significantly reduced
in miR-182 overexpressing A549 cells relative to NC control, while
gPCR showed that the mRNA level was also significantly reduced
(Fig. 50). In contrast, inhibition of miR-182 by anti-miR-182 in
A549-BM cells led to enhanced KLHL21 expression (Fig. 5D). These
results together support KLHL21 as an authentic target of miR-182.
To verify whether miR-182 promotes IL-8 expression in NSCLC cells
through targeting KLHL21, we constructed a KLHL21 expression
vector (p3xFlag-KLHL21), which lacks the KLHL21 3'UTR, for
ectopic expression of Flag-KLHL21. Our qPCR and ELISA assays
confirmed that restoration of KLHL21 expression in miR-182-
overexpressing A549 cells dramatically abrogated the effect of
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Fig. 4 miR-182 upregulated NSCLC cells promote osteoclastogenesis through enhancing IL-8 secretion. A TRAP staining analysis of the
osteoclast differentiation of RAW264.7 cells after cultured in the indicated CM for 6 days. Arrowheads indicate mature, multi-nucleated
osteoclasts. B Transcriptome-seq combined with Gene Ontology analysis revealed the enrichment of multiple signaling pathways in miR-182-
overexpressing A549 cells. C Volcano plot showing differentially expressed genes in miR-182-overexpressing A549 cells compared with the
negative control cells, with selected cytokines highlighted. D qPCR analysis of the mRNA expression of IL-8, IL-1, IL-12 and CXCL3 in miR-182-
overexpressing A549 (left) or H1299 cells relative to controls (right). E, F Western blotting of IL-8, IL-1, IL-12, and CXCL3 levels in CM from miR-
182-overexpressing (left) or H1299 cells (right) relative to controls, with total protein staining (Coomassie) confirmed equal loading. F, G ELISA
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miR-182 on IL-8 expression and secretion (Fig. 5E, F). Collectively,
these results support that miR-182 in NSCLC regulates IL-8
expression and secretion via the KLHL21:NF-kB regulatory axis.

IL-8 activates osteoclastogenesis via STAT3 signaling

We further asked how IL-8 acts to facilitate NSCLC-induced
osteoclastogenesis. To this end, we examined the effect of IL-8 on
several well-documented signaling pathways involved in osteo-
clast differentiation, including STAT3, NF-kB, ERK and PI3K, in
RAW264.7 cells [33-35]. We found that either miR-182-CM or
recombinant IL-8  treatments primarily activated the
STAT3 signaling but barely altered other tested signaling path-
ways (Figs. 6A and S6). In line with a previous study showing that
STAT3 promotes osteoclast differentiation by upregulating the
osteoclast differentiation key regulator NFATc1 [45], we found
both miR-182-CM or IL-8 treatments significantly elevated NFATc1
protein expression in RAW264.7 cells (Fig. 6A). Consistent with our
above results showing miR-182-CM promotes osteoclastogenesis
in a RANKL-independent manner (Fig. 4A), OPG treatment little
altered STAT3 phosphorylation and NFATc1 expression in miR-
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182-CM or IL-8-treated RAW264.7 cells (Fig. 6B, C). In sharp
contrast, treatment with AG-490, a small molecular inhibitor for
JAK/STATS3 signaling, dramatically abolished the stimulatory effect
of miR-182-CM or IL-8 treatment on STAT3 phosphorylation and
NFATc1 expression in RAW264.7 cells (Fig. 6B, C). Moreover, our
ex vivo osteoclast differentiation assay showed that AG-490
markedly suppressed the stimulatory effect of miR-182-CM or IL-8
treatment on RAW264.7 cell differentiation (Fig. 6D), supporting
that STAT3 signaling is responsible for miR-182-CM or IL-8-induced
osteoclastogenesis. These results together suggest that miR-182-
CM treatments promotes osteoclast differentiation via activating
the STAT3 signaling pathway in osteoclast precursors cells.

Systemic delivery of IL-8 neutralizing antibody inhibits the
osteolytic bone metastasis of NSCLC cells in nude mice
Would IL-8 be functionally required for miR-182-driven osteolytic
bone metastasis of lung cancer in vivo? To address this question,
we implanted the miR-182-expressing lentivirus-infected A549
cells into nude mice via intrailiac artery injection. 3 days post-
implantation, IL-8 neutralizing antibody was delivered to the mice

Cell Death and Disease (2023)14:298



M.-N. Zhao et al.

A o
A549 H1299
—_— EEEE— IL-8 - + + +
miR-182CM - + - miR-182CM - OPG - - + -
IL-8 - - + IL-8 - - ¢ AG-490 - - - +

o © =
o ® I S o ® ® ®
o +l +l — + r) < =% 3¢
- o © © S X 3 A
(=2 © (o2 N o 2]
= - N < 3 N
N N =

B
A549 H1299
miR-182CM - + + + miR-182CM - + + +
OPG - - + - OPG —~ = & =
AG-490 - - -+ AG490 - - - +
8% & §
© 2'5' g
8§ § <
. o —
0 (2] [} < N~ N
8 5 % 8 § & &
8 I § S R T
(s} [se} (3] (s} -~
D
A549 H1299
15 4 —_ 8 *%k 20 - *x
o % o
B < 6 & 15 -
2 2 2
£ 34 8 104
g . 8 g
(5] T (5}
] 9 2 ) i
73 8 » D
(@) (@]
0- 0= 0 -
AG-490 - + AG-490 - + AG-490 - =
miR-182 CM+ miR-182 CM+ IL-8 +
miR-182 CM+ miR-182 CM+ IL-8 +

Fig. 6 IL-8 activates osteoclastogenesis via STAT3 signaling. A Western blotting of the effects of miR-182-CM or IL-8 on STAT3
phosphorylation and NFATc1 expression in RAW264.7 cells. Quantification of blotting intensity is shown in parentheses (the one in control
cells is set as 100% after normalization with p-actin). B, C Western blotting of the effects of JAK/STAT3 signaling inhibitor AG-490 and RANKL
decoy receptor Osteoprotegerin (OPG) on STAT3 phosphorylation and NFATc1 expression in miR-182-CM (B) or IL-8 (C) -treated RAW264.7
cells, with quantification of blotting intensity shown in underneath (the one in control cells is set as 100% after normalization with B-actin).
D TRAP staining analysis of the effect of AG-490 treatment on osteoclast differentiation of miR-182-CM or IL-8-treated RAW264.7 cells.

Arrowheads indicate mature, multi-nucleated osteoclasts. Scale bars, 50 pm. The average values + SEM of three separate experiments are
plotted. **P < 0.01.

Cell Death and Disease (2023)14:298 SPRINGER NATURE



M.-N. Zhao et al.

10

A - B

IL-8 Ab treatment ﬂg/%

4  Weeks
P P
T41# Intrailiac Artary BLI 7
PR Injection ~ES
(o
19G 30 Kk
L ]
X 204 %
> L]
E L]
o
10 _;F_

O —F—T—

IgG  IL-8Ab
E
CTSK p-STAT3 DAPI Merge
o . .
o
Q
<
[ee]
] . .

IL-8 Ab kel

L 80000 -
2 60000 4 °*+°
X =+
@ 40000 -
2 20000 4
ol
@ 2000
8
© 1500 - .
g 1000 - =5
& 500
o
0 - r 1
19G IL-8 Ab
15
® dkk
3
L]
. ©
o 9 -
zse 10
X o
| =
- £
= s
o £ 5 o n
-g - o
5 —+
b4 ot
0-+——
IgG IL-8 Ab

(% Positive Nuclei)
N w D (2
o o o o
1 1 1 |

p-STAT3 Translocation
>
1

o
!

(©) Y
NS} » v
Y

Fig.7 Systemic delivery of IL-8 neutralizing antibody overrides NSCLC bone metastasis in nude mice. A Schematic diagram illustrating the
experimental design. The immunodeficient mice (5 for each group) were administered by IlIA injection with miR-182-overexpressing A549
cells, followed by intravenous injection of IL-8 neutralizing antibody (0.1 mg/mouse) twice a week for 3 weeks. B-D IL-8 neutralizing antibody
significantly inhibited bone metastasis formation in miR-182-overexpressing A549 cell-injected mice. At the treatment end (week 4), the bone-
metastatic tumors were detected by BLI signals (B), bone damage was measured by micro-CT and quantified by BV/TV (C), and tumor-induced
osteoclastogenesis was analyzed by TRAP staining, with TRAP-positive osteoclasts indicated by arrowheads (D). E Co-immunostaining of
p-STAT3 (red) and the osteoclast marker CTSK (green) in distal femurs from two groups at the treatment end (week 4) (left). Quantification of
p-STAT3™ osteoclasts in metastatic lesions (right). Scale bars, 50 pm. The average values + SEM of three separate experiments are plotted.

**P < 0.01; ***P < 0.001.

by intravenous injection, with twice a week for consecutive three
weeks (Fig. 7A). Indeed, treatment with IL-8 neutralizing antibody
led to a significant reduction of tumor burden in the hindlimb of
mice, osteolytic bone lesion areas, and osteoclasts within bone-
metastatic lesions in the hindlimb of mice (Fig. 7B-D). Moreover,
our immunostaining showed a significant reduction of STAT3
phosphorylation in osteoclasts in metastatic niches from IL-8
neutralizing antibody-treated mice compared with IgG treatment
controls (Fig. 7E; osteoclasts were indicated by the marker CTSK).
These results together indicate that IL-8 is required for osteolytic
bone metastasis of NSCLC cells in nude mice, supporting the
therapeutic efficacy of IL-8 neutralizing antibody against osteolytic
bone metastasis of lung cancer.

The expression of miR-182 and IL-8 is correlated in human
bone-metastatic lung cancer specimens

To test whether our above findings in NSCLC and pre-osteoclast
cells are clinically relevant, we examined the levels of IL-8 in a
cohort of human NSCLC primary tumors (n = 45), non-tumorous

SPRINGER NATURE

adjacent tissues (n=45) and bone metastatic tumors (n=15).
Similar to miR-182 expression (Fig. 1E), IL-8 expression was
significantly upregulated in primary NSCLC tumors relative to
adjacent normal tissues, and further upregulated in metastatic
bone tumors (Fig. 8A). Importantly, we found a positive correlation
between miR-182 and IL-8 levels in the bone metastatic tumors
(Fig. 8B). Notably, by Kaplan-Meier analysis, we found that IL-8
expression in tumors was inversely correlated with the overall
survival in NSCLC patients (Fig. 8C). Collectively, these data
suggest that the miR-182/IL-8 regulatory axis is involved in the
interaction between tumor and bone stromal cells during the
outgrowth of metastatic lung cancer cells, thereby damaging
bone structures and resulting in lung cancer bone metastasis in
the patients.

DISCUSSION
During bone metastasis, cytokine-mediated crosstalk between
cancer cells and local bone cells may create a microenvironment

Cell Death and Disease (2023)14:298
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to modulate bone homeostasis for favoring the colonization of
cancer cells. For examples, bone-metastatic breast cells can
produce high levels of bone-modulating factors, such as IL-13
and IL-11, to facilitate their spreading to the bone and subsequent
metastatic outgrowth in the niche [11, 46, 47]. Also, both bone-
metastatic myeloma and breast cancer cells are able to stimulate
the production of IL-6 by bone marrow stromal cells, resulting in
increased osteoclast differentiation and bone destruction [48, 49].
Moreover, IL-18 and IL-7R axis predominantly induces osteoblastic
lesions and supports the skeletal colonization and metastatic
progression of prostate cancer [50, 51]. However, whether and
how cytokines or growth factors deposited in osseous lesions
promote lung cancer bone metastasis remains largely unexplored.
In the present study, we found that bone-metastatic NSCLC cell-
produced IL-8 is functionally required for their osteolytic bone
metastasis, and also showed that targeting IL-8 could be a new
strategy to interrupt lung cancer bone metastasis.

Notably, IL-8 can be produced by various types of stromal cells
in the tumor microenvironment, such as monocytes, endothelial
cells, and lymphocytes. Multiple studies have shown that IL-8 is
also overexpressed in a variety of cancer cell lines and functions as
an autocrine and/or paracrine growth factor to facilitate tumor
growth, invasion, metastasis, and angiogenesis [52-54]. Interest-
ingly, our findings indicate that IL-8 secreted by bone-metastatic
NSCLC cells acts to induce osteoclastogenesis independent of
RANKL but dependent on JAK/STAT3 signaling. Our observation is
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echoed by a previous study reporting that osteoclast-specific Stat3
deficiency causes impaired bone catabolism in mice [45], and also
reminiscent of a recent study showing JAK/STAT3 as the major
signaling pathway for interleukin actions in regulating osteoclast
differentiation [55]. These findings together suggest that IL-8/
STAT3 signaling is important for cancer cell-induced osteoclast
differentiation in the metastatic niche.

MiR-182 is highly expressed in sensory tissues and organs, and its
function is involved in the inner ear and retina development, as well
as osteoclast and T cell differentiation [56]. Recent studies have
shown that miR-182 exerts a regulatory effect on tumor occurrence,
progression, and distant metastasis. In melanoma, dysregulation of
miR-182 promotes tumor metastasis expressed by targeting FoxO3
[25]. While TGF-B-induced miR-182 inhibited SMAD7 to promote
EMT, invasion, and distant metastasis of breast cancer cells [26].
Despite that it remains controversial about the role of miR-182 in
lung tumor occurrence and development [27, 28], our data indicate
miR-182 as a critical regulator in NSCLC cells for bone metastasis and
further demonstrate that miR-182 promotes NSCLC cell-induced
osteolysis and metastatic burden by enhancing IL-8 secretion.
Indeed, miR-182 has been shown to play a role in the TGF-3-induced
bone metastasis of breast cancer [26] and TNF-a-mediated
osteoclastogenesis [57]. Thus, these findings together suggest that
upregulation of miR-182 in bone-metastatic cancer cells may
represent a common mechanism linking inflammatory signaling
and osteoclastogenesis in the metastatic niche.
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In summary, our study identified the miR-182/IL-8/STAT3 axis as

an important signaling pathway in regulating osteolytic metastasis
of lung cancer. Importantly, these findings provide direct support
for IL-8 as a therapeutic target for lung cancer patients with bone
metastatic potential.

DATA AVAILABILITY

The data used to support the findings of this study are included within the article.
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