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Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin
homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as
an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation,
adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated
clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the
regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable
consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis.
Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that
adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases.
Further research is needed to improve our understanding of this phenomenon.
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FACTS

® Age-related hypodermal dysfunction and its unfavorable
consequences accelerate skin aging-related processes, such
as chronic inflammaging, immunosenescence, delayed wound
healing, and loss of cell-cell communication.

® Age-related changes in adipose tissues involve the redistribu-
tion of deposits and changes in composition in parallel with
the functional decline of adipocyte progenitors, defective
redifferentiation, accumulation of senescent cells, and impro-
per adipocytokine production.

® As dWAT has been shown to exhibit differentiation and
immunoregulatory functions, it is recognized as an important
organ for both non-metabolic and metabolic health in skin
regeneration and rejuvenation.

® dWAT plays an essential role in aging and is considered an
early initiation event in aging and a therapeutic target for the
treatment of age-related skin diseases.

OPEN QUESTIONS

® What are the fundamental mechanisms that trigger a cascade
of molecular and cellular changes, such as hypodermis-
resident cell aging, in response to both endogenous and
external stressors?

® How does dWAT interact with hypodermis-resident cells in the
maintenance of organismal homeostasis and the regulation of
self-renewal, immune potential, and metabolic modulation?

® What type of medical methods aid in interventions with dWAT
for delaying aging-related damage in skin homeostasis and
function as well as in optimizing the total healthy lifespan of
individuals?

INTRODUCTION
The hypodermis, also referred to as subcutaneous tissue, is the
innermost layer of the skin in the human body. The hypodermal
connective tissue is more important than an element that provides
structural support. Its functions include wound healing, preserva-
tion of energy homeostasis, body temperature regulation, mechan-
ical force lubrication, and tissue connection [1]. Under the dermal-
epidermal junction, there are two types of adipose tissue in the
skin subcutaneous adipose tissue and dermal adipose tissue [1].
A decade ago, the terms used to describe the deep reticular
layer of the skin were not unified. However, with advanced
research on hair follicles and continuous improvements in cell
line-tracing technology, the location of the hypodermis between
the reticular layer of the dermis and panniculus carnosus in mice
has been confirmed [2]. Evidently, the cell renewal frequency,
precursor cells, and lineage differentiation in adipose tissue are
different from those in fat from other parts of the body, but they
are closely related to the growth cycle of dermal hair follicles.
These adipocytes and dermal fibroblasts have common precursor
cells and are located in the dermis [2]. Therefore, in recent years,
scholars have proposed the concept of human dermal white
adipose tissue (dWAT) to characterize adipose tissue surrounding
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hypodermis not only contributes to skin thinning and sagging but also

considerably harms the dermal microenvironment and skin function. Aged ASCs exhibit senescent characteristics including reduced viability

and proliferation, while the individual morphology and phenotype a

re independent on donor age. Accumulated oxidative stress during aging

reduces the expression of stemness markers and interferes with mitochondrial function and autophagy progression. The immature
fibroblast-adipocyte lineage loses its adipogenic-antimicrobial properties with a strengthening of the myofibroblast phenotype and no
longer produce antimicrobial peptide in adulthood. Aged immune cells lose their ability to sustain adipose tissue homeostasis and promote
healthy aging in various ways. BAT-mediated thermogenesis also declines with age. The aged microenvironment induces an age-dependent

increase in the expression of pro-inflammatory mediators and

a more proinflammatory M1-like phenotype of macrophages in the

hypodermis. Systemic differences in the quantity, intensity, pathway, and signaling mediators of cell-cell communication in young and aged

skin have been observed.

the proximal half of the hair follicles. This definition not only
indicates the anatomical structure of the skin but also has
important implications for adipose research and associated skin
diseases.

Extensive advancements in hair follicle research have led
researchers to coin the terms “dermal adipose tissue” and
“intradermal adipocytes.” From an evolutionary perspective,
coordinated changes in dermal fat formation and hair follicles
are conducive to improving the adaptability of mammalian skin
and are related to seasonal hair growth in animals [3]. In 2013, the
adipocyte lineage of dWAT was first found to facilitate acute skin
wound healing [3]. At present, dWAT is considered to play an
etiological role and is a potential therapeutic target in obesity,
lipodystrophy, alopecia, and fibrosis, among other conditions [4].

In contrast to other fat depots, the hypodermis becomes
thinner with age [5]. The hypodermis is an important stem cell
niche and hormone and adipokine source. It is populated by local
and blood-derived immunocytes that contribute to the innate
immune system in the skin. Aging in the hypodermis not only
contributes to skin thinning and sagging but also considerably
jeopardizes the dermal microenvironment and skin function [6].

Multiple pathological mechanisms cause defective redifferentia-
tion, adipogenesis, inflammation, improper adipocytokine produc-
tion, and immunological dissonance, all of which lead to age-
associated dWAT dysfunction [7]. Here, we review age-related
alterations in dWAT across levels, emphasizing the underlying
mechanisms that regulate aging. We also discuss the pathogenic
pathways of age-related fat dysfunction and the unfavorable
consequences of accelerated skin aging, such as chronic inflamma-
ging, immunosenescence, delayed wound healing, and loss of cell-
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cell communication, and summarize our understanding of dWAT as
a therapeutic target for the treatment of age-related skin diseases.

ROLE OF THE HYPODERMIS IN SKIN HOMEOSTASIS

As the first line of defense against external pathogens and
environmental insults, the cellular components of the skin work in
harmony to counter physical and chemical challenges. Hypoder-
mal adipocytes respond to these challenges either alone or in
combination with multiple immune cells (Fig. 1).

Hypodermal stem cell reservoir under senescent phenotype
As people age, the hypodermis tends to thin. The connective
tissues joining the dermis to muscles, tissue, and bones also
become thinner. In addition, a decrease in energy expenditure
with age leads to depot redistribution among visceral, subcuta-
neous, marrow, intermuscular, and intramuscular adipose tissues,
in parallel with the functional decline of adipocyte progenitors,
defective redifferentiation, accumulation of senescent cells, and
improper adipocytokine production [8, 9],

Adipose stem cells (ASCs) from white adipose tissue are thought
to constitute the major stem cell population contributing to
subcutis regeneration and play an essential role in epithelialization
[9-11]. Aged ASCs exhibit senescent characteristics concomitant
with reduced viability and proliferation [12]. However, the
individual morphology and phenotype of these cells are barely
dependent on donor age [7, 12]. Skin preadipocyte proliferation
and differentiation capacities are weakened with age [13]. Age is
negatively correlated with preadipocyte proliferation in subcuta-
neous depots, but not in omental depots. Additionally, each fat
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Table 1. The aged-related differences in dWAT, sWAT, and vWAT.

Aged hypodermis white adipose tissue

dWAT
Progenitor clusters

Aged visceral WAT Ref.

sWAT VWAT

Only one cluster of progenitors is included in a mixed population of SAT and [54]

VAT-derived cells.

Reservoir of ASCs

Bioactivity of the individual stem cells Unchanged
Increased burden of senescent cells F
SA-p-gal B A
Age-dependent regulatory cells (ARCs) +

Immune- and inflammation-associated gene expression  +

Less number of effective ASC in WAT

[13, 14]
[15]

+! [17]
s [16]
= [18]
+! [21]

+ There is a rise in the amount; —: There is a decrease in the amount; +! It increases more than “+7 but it's a qualitative result; +++-++++ It increases seven

times more than “+"

+ increase in quantity; — decrease in quantity; +! increase greater than “+ but a qualitative result; ++-+++-++ an increase that is seven times more than that

in "+
2
%
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Adipose Adipose
Tissue Tissue

Fig. 2 Age-related redistribution of adipose tissues. A decrease in
energy expenditure with age leads to depot redistribution among
visceral, subcutaneous, and other adipose tissues, in parallel with
the functional decline of adipocyte progenitors, defective rediffer-
entiation, accumulation of senescent cells, and improper adipocy-
tokine production. The characteristic manifestation is the increased
volume of visceral adipose tissue and the reduced volume of
subcutaneous adipose tissue.

depot is different, as preadipocyte properties vary according to
their localization [14]. Therefore, when the stem cell reservoir for
differentiation reduces with aging, the abundance of hypodermal
adipose tissue also reduces, with an increase in fibrosis and low
adipocyte quantity [8].

Hypodermal adipose tissue under inflammaging phenotype
Hypodermal AT is a major endocrine organ with strong
immunomodulatory properties [15, 16], undergoing changes with
age [17]. In healthy individuals, adipose inflammation and
metabolic disorders present distinct proaging patterns for stable
senescence transformation (Table 1). The mass of subcutaneous
adipose tissue is independently reduced with age (Fig. 2). The
recently discovered age-dependent regulatory cells (ARCs) play
important roles in the age-related reduction of SAT volume [18].
ARCs increase in abundance after middle age and display high
levels of pro-inflammatory markers, which usually inhibit the
differentiation of new adipocytes and block the expansion of SAT
size [18]. Notably, these cells increase in abundance with age and
are not affected by high-fat diet consumption in mice. Several
researchers consider that the skin may have a distinctive aging
pattern owing to its special anatomical location and year-in-year-
out environmental exposure [19, 20] (Table 1).

Recent evidence suggests that an increased burden of
senescent cells (SCs) in adipose tissue might contribute to the
pro-inflammatory phenotype of aging for the effective clearance
of cells [21]. Subcutaneous AT showed an excellent effect in the
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elimination of SCs, alleviating age-related tissue dysfunction and
inflammaging. On one hand, the activity of senescent factor SA-
B-gal is seven-fold higher in subcutaneous AT than in omental
AT in contrast to that of upregulated inflammatory-associated
factors such as insulin-like growth factor-binding protein 3
(IGFBP3), plasminogen activator inhibitor 1 (PAI1), C-C motif
chemokine ligand 2 (CCL2), and interleukin (IL)-6 [22]. Among
them, IL-6 is a pleiotropic cytokine with various physiological
and pathophysiological functions. A low or controlled IL-6
release is associated with anti-inflammatory, antioxidant, and
pro-myogenic actions, whereas increased systemic levels of IL-6
can induce pro-inflammatory, pro-oxidant and pro-fibrotic
responses [23].

As a leading contributor to aging-related health decline, sWAT
seems to have a thicker “skin” than VWAT with respect to the
downregulating behavior of aging-regulated long non-coding
RNA [24, 25]. In pairwise age group comparisons, 1237 genes
were identified to be differentially expressed in the skin [26],
whereas only a few immune- and inflammation-associated
genes were found to be differentially expressed in the brain
and blood [26].

Role of dWAT in skin homeostasis and aging

Skin-associated adipocytes are established in the dermal
mesenchyme alongside fibroblast lineages in a manner that is
distinct from the development of subcutaneous adipocytes (Fig. 1).
This population constitutes a unique adipocyte population in the
skin (dWAT) [3, 6].

Considering the heterogeneity of dWAT, the description and
definition of stem cell lineages were not uniform in initial studies.
Some researchers referred to them as perifollicle stem cells or
dermal premature cells [27, 28]. With advancements in research,
the cells are now considered a heterogeneous ASC group with
characteristics of fibroblasts and macrophages [4, 29]. However,
high-throughput sequencing and correlation analyses of the
complete lineage composition of these stem cells are yet to be
conducted.

dWAT, as an immune reservoir, contains nearly every immune
cell type, including mast cells, macrophages, memory T cells,
dendritic epidermal T cells, and Langerhans cells [30]. However,
even adipocytes are capable of producing adipokines and
antimicrobial peptides [31, 32]. Moreover, these immune cells
also participate in the non-immune functions of dWAT, such as
regulating adipocyte homeostasis and responding to alterations in
the nutrient status and body temperature, which indicates the
therapeutic potential of the adipose tissue immune system in
aging and disease [33, 34].
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Antimicrobial immunity in dWAT. dWAT is a responsive endocrine
organ capable of exerting both local and systemic immune effects
[35]. The preadipocyte lineage of dermal fibroblasts in dWAT
undergoes rapid in situ proliferation and differentiation and
synthesizes the antimicrobial peptide cathelicidin, which can
directly combat exogenous infections of the skin [30]. These
preadipocytes go down the colocalization of preadipocyte factor 1
(PREF1/DLK1), an early marker of adipogenesis, and cathelicidin, to
specifically trigger the production of cathelicidin [31]. Mature
fibroblasts respond to infections by inducing the reactive
adipogenesis of cathelicidin to stimulate the TGFBR-SMAD2,3
pathway [36, 37]. However, the immature fat and dFB of
adipogenic potential progressively lose the ability to produce
CAMP in adulthood, along with an increased susceptibility to
infection [38].

This age-related process is mediated by the key upstream
regulator TGF-B2 in neonatal dFB [38], which causes the immature
fibroblast-adipocyte lineage to lose its adipogenic-antimicrobial
properties with a strengthening of the myofibroblast phenotype
[39, 40]. When treated with PPARy inhibitors or adipogenic
progenitors, cathelicidin production in dWAT and innate immune
responses in the skin are also severely compromised [15, 30].

The antibacterial effect of dWAT may be associated with its
antioxidant function and maturation process; however, the
potential underlying mechanism remains unknown. Recently,
retinoids were shown to enhance and sustain the expression of
cathelicidin depending on a broadly active transcription factor
within the CAMP gene promoter, which results in the induction of
hypoxia-inducible factor 1-alpha (HIF1a) [41].

Thermo-immune role of dWAT. In mammals, white adipose tissue
(WAT) stores energy, whereas brown adipose tissue (BAT)
dissipates energy into heat through uncoupling protein 1
(UCP1)-mediated thermogenesis [42]. As humans’ BAT is scarce
in the skin, beige adipocytes developed from WAT undergoing the
‘white to brown conversion’ represent a promising strategy to
counteract skin dysfunctions [43, 44]. Brown-like, beige, or brite
adipocytes in WAT can acquire thermogenic properties and
become UCP1-positive following exposure to cold temperature,
3 adrenergic agonist stimulation, or exercise [45, 46].

Beige fat cells develop via the activation of thermogenic genes
in mature white adipocytes or through the beige adipogenic
differentiation of precursor cells [43, 44, 47]. Activation of
adipocyte B3 adrenergic receptors induces pre-existing white
adipocytes to undergo dramatic cell programming to adopt the
beige phenotype, including massively increased mitochondrial
numbers and activity [46, 48]and a profound shift of mitochondrial
proteome [49, 50].

BAT-mediated thermogenesis declines with age [51]. Human
beige fat activity levels also decline with aging, correlating with a
decrease in metabolic rate and an increase in adiposity [52, 53].
Cold-responsive mitochondrial proteolysis is a prerequisite for
white-to-beige adipocyte cell fate programming during adipocyte
thermogenic remodeling [54]. Augmented mitochondrial protease
LONP1 expression raises succinate levels and corrects aging-
related impairments in white-to-beige adipocyte conversion and
adipocyte thermogenic capacity [54]. Also, the IL-6-knockout (KO)
is observed to enhance BAT thermogenesis, but these improve-
ments disappear in elderly KO mice [55].

Cold acclimation suppresses immune response-related path-
ways in adipose tissues and peripheral blood mononuclear cells
(PBMCs) by suppressing the expression of genes involved in
antigen recognition and presentation, cytokine signaling, and
immune system activation [56]. Emerging evidence shows that
when host mice are housed in a warmer environment, they exhibit
greater levels of CD8+ helper T cell recruitment and activation,
and eventually exhibit increased IFN-y production and greater
expression of the activation markers CD69 and Glut-1 [57].
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Subsequently, the recruitment and activation of type 1 immune
cells, including CD8+ T cells, TH1 cells, NK cells, and type 1 innate
lymphoid cells (ILC1), contribute to the accumulation of proin-
flammatory macrophages in adipose tissues [58].

The homeostatic and reparative role of dWAT-resident immunocytes.
Human WAT has 28 distinct cell types, including eight previously
uncharacterized immune populations, comprising unique sub-
sets of adipose-resident NK cells, innate lymphoid cells (ILCs),
macrophages, and dendritic cells (DCs) [59]. Using cytometry by
time-of-flight (CyTOF), researchers have suggested that dendri-
tic cells, particularly CD11bM9" DC-2, are significantly enriched in
visceral WAT, making it more susceptible to obesity-induced
inflammation, whereas monocytes are more abundant in
subcutaneous WAT [60, 61]. The proportion of immune cells in
the visceral and subcutaneous WAT depots was comparable, but
the stored APCs had different abundance of cellular subtypes
[60].

Aged immune cells lose their ability to sustain adipose tissue
homeostasis and promote healthy aging in various ways. By
producing the pro-aging factor CCL11 (eotaxin-1), a potent
chemoattractant for eosinophils, aged WAT eliminates ATE from
adipose tissues and disequilibrates the original positive immune
state induced by eosinophil-derived IL-4 [62]. Additionally,
predominantly composed of Bl-innate B cells, fat-associated
lymphoid clusters (FALCs), have recently been found to serve as
unique immunological sites that are acutely responsive to
pathogens and expand in response to chronic inflammation
[63, 64]. Depending on the gradual accumulation of the Nirp3
inflammasome, non-senescent adipose B cells (AABs) resident in
age-induced FALCs expand and continuously express IL-1R,
which inhibits IL-1 signaling to reduce AAB proliferation and
increase lipolysis as a manifestation of organismal senility [65].

Adipocyte-myofibroblast transition

Tissue regeneration requires adipocyte-dependent communica-
tion for the repair of damaged tissues [66, 67]. Adipocytes residing
in the hypodermis undergo lipolysis to efficiently recruit macro-
phages during inflammation. In response, hypodermal adipocyte-
derived cells tend to dedifferentiate and give rise to diverse
myofibroblasts in the wound bed in later stages [66]. Interestingly,
most dermal myofibroblasts in fibrotic skin arise from adiponectin-
positive progenitors residing in the skin. This is indicative of a
differentiation process known as adipocyte-myofibroblast transi-
tion (AMT) [68](Fig. 1).

In vitro experiments have shown that adipocytes can be
induced to form myofibroblasts when transforming growth factor-
B (TGF-B) expression and Wnt signaling are activated [69-71]. The
effects of TGF- on adipocyte differentiation and fibrosis are
mediated via the inhibition of peroxisome proliferator-activated
receptor-y (PPAR-y), a key indicator of adipocyte differentiation
[72, 73]. When the PPAR-y gene (PPARG) is mutated, variant PPAR-
y exerts counter-regulatory effects on TGF-3, which leads to anti-
fibrotic effects in systemic sclerosis (SSc) [74].

Previous studies have shown that mature dermal adipocytes
inhibit the reinitiation of the anagen phase of hair follicle (HF)
cycling in depilated adult mice by inducing bone morphogenetic
protein (BMP) signaling, which is considered to be initiated in early
stages but is lost in later stages [29, 75]. Dermal cells from hair
follicles in wounds reprogram myofibroblasts to an adipocyte fate
through an HF-independent BMP-ZFP423 pathway, whereas
dermal cells without hair follicles do not [76]. BMP2 and BMP4
upregulate adipogenic lineage transcription factors including
Zfp423, Crebl2, Stat5b, and kIf15 during active cycling [77].
Concurrently, in addition to in situ AMT, wounding was shown to
induce the recruitment of Pdgfra'®V-Pdgfrb™9" myeloid cells,
which are a rare subset of adipose precursors contributing to
adipocyte regeneration [78].

Cell Death and Disease (2024)15:443



DETERIORATION OF STEM CELL RESERVOIR IN THE AGE-
RELATED MILIEU AFFECTING SKIN HOMEOSTASIS
Although adipose tissue is primarily composed of adipocytes
scaffolded by a web of vasculature, hypodermal WAT also includes
preadipocytes, endothelial cells, macrophages, and various other
immune cells [79, 80]. The quality and relative quantity of these
different cell types, especially preadipocytes, are important for
maintaining proper skin function. Committed preadipocytes arise
from multipotent, gradually replicating mesenchymal progenitor
cells and potentially circulating progenitors [81-83]. Preadipocytes
also play critical immunological, proinflammatory, and hemostatic
roles and express markers of the monocyte-macrophage lineage
[84-86]. Their osteogenic potential is impaired with aging,
whereas their adipogenic potential is maintained [87, 88]. A
combination of intracellular and extracellular stimuli induces a
cascade of transcription factors, including members of the C/EBP
family and PPARy [89-91]. These transcription factors act
sequentially to alter the expression of over 2500 genes, which
leads to the development of the fat cell phenotype [92, 93].

Preadipocytes from different fat depots exhibit distinct patterns
of gene expression, and these depot-specific characteristics
inherent to preadipocytes and their corresponding progenitors
may contribute to regional functional differences [14, 94, 95].
Compared with that of other progenitors, the abundance of
subcutaneous clusters is significantly correlated with factors that
enhance a pro-inflammatory state, such as fasting glucose levels
[96].

Accumulated oxidative stress is inevitable during aging and is
accompanied by mitochondrial dysfunction, autophagy inhibition,
and the slowing of metabolism [97, 98](Figs. 1, 3). In human
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subcutaneous ASCs, oxidative stress reduces the expression of
stemness markers and interferes with autophagy progression. The
expression of proteins such as SRY-related HMG box 2 (Sox2),
adenosine 5-monophosphate-activated protein kinase a (AMPKa)
(@ major inducer of autophagy and stress responses) [99], and
silent mating type information regulation 2 homolog 1 (SIRT1) (a
protective enzyme that plays an important role in cellular
metabolism and improves cellular resistance to oxidative stress)
[100] and telomerase activity [101] decreased significantly with
age. Meanwhile, the level of eukaryotic elongation factor 2 (eEF2)
was positively correlated with age [102].

ASCs tend to adapt to aged, unfavorable environments. To
meet incremental homeostatic demands during natural chron-
ological aging, ASCs exhibit an increase in nascent protein
synthesis and a shortened G1 phase to facilitate a more rapid
transition to the subsequent stage of the cell cycle [103]. The
differentiation of hypodermal WAT ASCs is also known to be
regulated by epigenetic modifications [104], which are less likely
to be influenced by ROS, UV radiation, and other genetic senility
boosters.

Despite the presence of heterogeneous cell populations, AMT
helps replenish damaged adipocytes. In adulthood, relatively
limited AMT is observed in subcutaneous and dermal adipose
depots. However, under physiological and pathophysiological
stress, such as caloric excess, cold exposure, injury, and tumors,
mature dermal adipocytes undergo dedifferentiation and rediffer-
entiation via the recruitment of resident adipocyte precursors
[105]. Dermal adipocytes are a class of white adipocytes that
exhibit excellent deformability. In response to stimuli, adipocytes
in dWAT re-express GFP and PDGFRa [106], which are markers
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Fig. 3 Mechanism of homeostatic and reparative incapacitation in the aged hypodermis. Multiple pathological mechanisms cause

defective redifferentiation, adipogenesis, inflammation, improper adipocytokine production, and immunological dissonance, all of which lead
to age-associated hypodermis dysfunction. Accumulated extracellular and intracellular oxidative stress is inevitable during aging, which leads
to reduced expression of stemness markers and interferes with autophagy progression in human subcutaneous ASCs. Aging affects the
structural organization of the dermal and hypodermal ECM. ECM degradation during aging differentially affects immune cell subpopulations
and infiltration. Aging dermal fibroblasts lost its adipogenic-antimicrobial functions with raising adipocyte-myofibroblast myofibroblast
phenotype. An increased burden of senescent cells in adipose tissue can contribute to the pro-inflammatory phenotype of aging for the
effective clearance of cells. Old subcutaneous AT showed a recessive effect in the elimination of SCs, resulting in age-related tissue
dysfunction and inflammaging. ASCs tend to adapt to aged, unfavorable environments. During natural chronological aging, ASCs exhibit an
increase in nascent protein synthesis and a shortened G1 phase to facilitate a more rapid transition to the subsequent stage of the cell cycle.
Systemic differences in the quantity, intensity, pathway, and signaling mediators of cell-cell communication in young and aged skin have also
been observed.
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expressed only in adipose precursors and preadipocytes but not in
mature adipocytes [58]. In parallel with the tumor microenviron-
ment, loose-knit interactions between adipocytes and tumor cells
induce AMT and potentially facilitate tumor invasion via extra-
cellular matrix (ECM) remodeling and natural immune stimulation
[107, 108]. Adipocytes display myofibroblast- and macrophage-like
characteristics and reduce their lipid-storing capacity, which is
consistent with previous theories.

ROLE OF THE HYPODERMIS IN AGE-RELATED SKIN
DETERIORATION

Inflammaging

Aging induces ectopic lipid accumulation, which exacerbates
metabolic dysfunction with robust inflammatory and transcrip-
tomic changes [109]. Owing to disrupted homeostasis in
continuous fission and fusion cycles and mitophagy, the skin
becomes susceptible to a senescence-associated secretory phe-
notype (SASP) and inflammageing [110, 111]. As aging progresses,
a functional loss in the specificity and efficiency of the immune
system is induced, which promotes the perpetuation of an
ineffective inflammatory provoked state [112, 113]. This constant
inflammatory stimulus promotes age-related changes, including
the redistribution of adipose tissues and lipoatrophy in the skin
[114, 115](Fig. 3).

A systemic decline in autophagic activity with age can
subsequently impair homeostasis in skin tissues(Fig. 3), leading
to age-related diseases. In contrast to other tissues, aged
adipocytes upregulate autophagy based on a decline in Rubicon
expression and subsequently exacerbate the excessive autophagic
degradation of steroid receptor coactivator-1 (SRC-1) and tran-
scriptional intermediary factor 2 (TIF2) that contribute significantly
to adipogenesis [116]. The adiponectin receptor (AR), secreted by
subcutaneous adipocytes, attenuates inflammatory factor secre-
tion and apoptosis in aged skin by improving mitochondrial
morphology and function [117]. By activating AMP-activated
protein kinase (AMPK), AR suppresses dynamin-related protein 1
(Drp1)-mediated excessive mitochondrial division and potentially
reduces mitochondrial fragmentation and superoxide synthesis
[1171.

Although chronic systemic low-grade inflammation may induce
metabolic dysfunction, acute localized inflammation can be an
adaptive response with positive effects in hypodermal AT
remodeling and expansion, thus triggering a response to counter-
act age-related pro-inflammatory changes [118, 119]. Evidence
shows that under adverse circumstances, conserved proteins such
as spermatogenesis-associated protein 4 (SPATA4) show tissue-
specific functions in promoting preadipocyte differentiation
through activation of the extracellular regulated protein kinases
(ERK) 1/2 and CCAAT-enhancer-binding proteins (3 (C/EBPp)
pathways and facilitating adipokine expression in aged mice [120].

Immunoaging

Similar to that in other organs, both innate and adaptive immune
systems in the hypodermal skin undergo functional decline during
aging, becoming more fragile and susceptible to infection. This
gradual decline, known as immunosenescence [121], may
contribute to the incomplete clearance of senescent cells with
age [122, 123] (Fig. 3).

The mechanisms underlying immune evasion in senescent skin
cells may contribute to their persistence [124]. Senile fibroblasts
upregulate HLA-E expression for immune escape, thereby impair-
ing their clearance by NK and CD8+ T cells that express the
inhibitory receptor NKG2A [125]. Collectively, senescent fibroblasts
produce lysophosphatidylcholine, an SASP factor that can not only
stimulate surrounding healthy fibroblasts to release chemokines
but also interfere with macrophages with toll-like receptor 2 and
6/CD36 signaling and phagocytic potential, which may encourage
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immune evasion and low-grade chronic inflammation during
long-term skin aging [126].

Concurrently, the aged microenvironment induces an age-
dependent increase in the expression of pro-inflammatory
mediators and a more proinflammatory M1-like phenotype of
macrophages in the hypodermis [127]. This M1-like phenotype
downregulates IL-4 and IL-13 and negatively influences the
expression of ECM proteins such as collagen type V alpha 1
(Col5al1) and collagen type VI alpha 1 (Col6al) by fibroblasts,
emphasizing the impact on the aged skin phenotype [128]. In
addition, advanced glycation end products (AGEs) can induce the
differentiation of monocytes into dendritic or macrophage-like
cells, leading to the development of a micro-inflammatory
environment [129] (Fig. 1).

Aging affects the structural organization of the dermal and
hypodermal ECM, in which collagen is sparsely distributed
[130, 131] (Fig. 3). The microenvironment of both the dermis
and hypodermis is essential for controlling inflammatory attacks
and maintaining remission. ECM degradation during aging
differentially affects T cell subpopulations and infiltration [132].
By manipulating mechanical changes to produce more youthful
ECMs, the infiltration of immune cells, such as T cells, can be
improved substantially [133].

Traumatic injury

Skin wounds in the elderly show significantly delayed healing,
similar to chronic diabetic wounds. Aging individuals produce
significantly more ROS, which damages critical organelles, reduces
cell viability, and delays the healing process [134, 135]. In a
senility-impaired milieu, the upregulated miR-21-3p/miR-126-5p/
miR-31-5p and downregulated miR-99b/miR-146 axes are con-
sidered to play a transcendent role in promoting fibroblast
proliferation and migration and regulating innate immune
responses and macrophage reprogramming, which interrupts
persistent inflammation and substantially delays healing
[136-141].

Unconventional inflammatory responses play a critical role in
tissue dysfunction and ineffective skin restoration [142]. An
expanding body of research suggests that tissue-resident
adipocytes and fibroblasts are actively involved in the modulation
of inflammation. Although several skin elements, including dWAT
and hair follicles, are not renewed in the normal wound bed, in
large wounds, macrophages can activate the proliferation of a
myofibroblast subset (AP) with adipose-like characteristics that
subsequently helps regenerate hair follicles [76, 143]. Age-related
variations in the gene expression of extracellular molecules are
observed in the transcriptome of myofibroblast populations in
young vs. old mice, where myofibroblasts express more metallo-
proteases with age [143]. This is consistent with the fact that older
fibroblasts can degrade the ECM more rapidly than younger
fibroblasts in the early stage and hinder recovery [144].

Adipocytes in the dermis can regulate skin wound repair by
releasing fatty acids into the wound bed, subsequently facilitating
Ly6c™9" proinflammatory macrophage recruitment and hastening
revascularization [66]. Consistent with the changes in AP cells,
mature dermal adipocytes dedifferentiate into myofibroblasts,
which later migrate and produce extracellular matrix [66].
Recovery can be induced in the skin with radiation-induced
wounds by lipid remodeling and the downregulation of lipid
metabolites without affecting the volume of the abdominal or
visceral adipose tissues [145].

Fibrosis

After the acute inflammatory and proliferation stages, scar
formation is essential for wound healing. Skin lipoatrophy
characteristically accompanies dermal fibrosis with the de novo
emergence of myofibroblasts to provide sufficient ECM and
consolidate mechanical force in SSc, scleroderma, wound repair,
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hyperplasia scars, or other skin diseases involving skin fibrosis
[146-149]. Myofibroblasts, the primary type of skin cells that form
scars, appear rapidly in both normal and scar-free Acomys mice
but only persist in normal mice after traumatic injury [150]. Many
researchers have asserted that ECM-producing myofibroblasts are
the primary targets of scar-free healing. Tamoxifen-inducible
genetic lineage tracing of mature adipocytes and single-cell RNA
sequencing revealed that dermal adipocytes alter their fate and
give rise to diverse myofibroblasts to generate extracellular matrix
in the wound bed [66].

In the red Duroc porcine model, autologous subcutaneous
adipose-derived cell therapy helped modulate IL-6 expression
within the scar, with upregulation observed during the early
proliferative phase and downregulation in the later scarring phase.
This is advantageous for inflammatory cell recruitment to initiate
angiogenesis, epithelial reconstruction, and matrix remodeling
[151]. Long-term effects, including amelioration of skin hardness,
collagen organization, epidermal-dermal junction reconstruction,
and hypervascularity, are achieved by regulating the IL-6-trans-
signaling-STAT3 pathway [152, 153]. T-lymphocytes, specifically
type 1 regulatory (Tr1) T cell subsets, can also promote HA-rich
ECM deposition and attenuate the expression of fibrotic
components via the polarization of M1 macrophages to M2
macrophages [154]. Dermal fibroblasts co-cultured with Tr1 cells
show an increase in HAS and downregulation in connective tissue
growth factor (Ctgf) [154].

However, the manner in which these interactions change with
age remains unclear. The majority of research on the role of
immune cells in the aging hypodermis has been focused on
diabetic complications and wound healing. Systemic differences in
the quantity, intensity, pathway, and signaling mediators of cell-
cell communication in young and aged skin wounds have been
observed in these models [155-157]. The greater number of
potential signaling interactions in aged skin wounds supports the
hypothesis that inefficient healing can result from overactive but
misdirected signaling or a lack of proper downstream response
[158]. Given that tissue aging is a summation of cumulative
conversions in single cells, the approach to pausing skin aging and
rejuvenation is significant for understanding aging and the holistic
body senile.

THE ANTI-AGING POTENTIAL OF SKIN CELLS IN DWAT

Adipose-derived stem cell lineages facilitate efficient repair based
on their differentiation potential and paracrine functions. The
differentiating role of the adipose-derived stem cell lineage in
aging has been emphasized in previous articles [18, 159, 160];
here, we focus on its secretion potential. As ADSC-exo is mostly
internalized by fibroblasts, its effects on resident immune cells can
be indirectly regulated through FBs. Based on high-throughput
sequencing results, hypoxic adipose stem cell exosomes
(HypADSCs-exo) participate in hypoxia adaptability and accelerate
diabetic chronic wound healing by promptly inhibiting inflamma-
tion through the phosphoinositide 3-kinase/protein kinase B
(PI3K/AKT) signaling pathway [161]. Microvesicles (MVs), which
are larger extracellular vesicles, are also capable of advancing
aging-induced or inflammation-delayed wound healing. Besides
inducing a visible increase in the expression of proliferative
markers and growth factors such as myelocytomatosis viral
oncogene homolog (c-Myc), matrix metalloproteinase 9 (MMP9),
vascular endothelial growth factor receptor (VEGFR), TGF-B, and
platelet-derived growth factor A (PDGFA), adipose stem cell-
derived microvesicles (ASC-MVs) also stimulate the activation of
AKT and ERK signaling pathways in skin cells, which accelerates re-
epithelialization, collagen deposition, and neovascularization
in vivo and eventually promotes more rapid wound closure
[162]. ASC-MVs are perceived as mediators of intercellular
communication and can be engulfed by human umbilical vein
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endothelial cells (HUVECs), HaCAT, and fibroblasts, along with all
types of primary skin cells [163].

An antioxidative strategy is beneficial for inhibiting unnecessary
inflammation. The overexpression of PRDX4, a member of the
antioxidant enzyme family, observed only in adult and aged mice
but not in young mice, can help reduce oxidative stress and
inflammation by rendering neutrophil recruitment, increasing
macrophage infiltration, enhancing angiogenesis, elevating GF
levels in vivo, and promoting the proliferation and migration of
fibroblasts after injury in vitro [164]. Exosomal PD-L1 can directly
bind to PD-1 on the surface of T cells and subsequently suppress T
cell activation. This efficiently inhibits excessive and persistent
inflammation and ensures the migration of nascent dermal
fibroblasts and epidermal cells [165]. MSC-exos have also been
demonstrated to possess antioxidant and mitochondrial restora-
tion capacities based on the adaptive regulation of the NRF2
defense system in ameliorating oxidative stress-induced skin
injury [166]. The serum levels of TNF-q, IL-1f3, and IL-6 and DNA
damage are attenuated after the intracutaneous injection of MSC-
exos. IL-6 could represent a determinant of the switch from
physiologic aging to age-related diseases [167]. Considering that
similar manifestations, including ROS accumulation, sustained
inflammation, uniform vascularity, and impaired autophagy, are
observed in aged skin, these stem cell therapeutic strategies can
be applied to hinder skin aging under pathological conditions
involving oxidative stress.

The master-subordinate relationship between dWAT hyperpla-
sia and its age-associated reactive immune response remains
unclear. However, it is conceivable that mechanisms involving the
expansion of the adipose-resident immune system and stronger
scavenger cells, such as macrophages, can be beneficial for demic
age resistance. Rapamycin, a dietary drug intervention that can
significantly extend lifespan, has been proven to induce a 56%
increase in CD45+ leukocytes in gonadal white adipose tissue
(gWAT), where the majority of these are adipose tissue macro-
phages (ATMs) responsible for the phagocytosis of apoptotic cells
and cellular excreta [168]. Diet-induced or obesity-related genetic
dWAT accumulation induces proinflammatory macrophages to
secrete overdose TNF and IL-6 via miRNA-containing exosomes
[169].

SUMMARY

With improvements in healthcare and living conditions, the global
population currently enjoys an extended lifespan. As individuals
age, the capacity of tissues to maintain homeostasis diminishes.
This pattern has led to a significant paradigm shift in modern
medicine, whereby the focus in the treatment of terminal diseases
has shifted to earlier interventions for the prevention and
management of aging, along with healthy lifespan optimization.
Hypodermis-resident cells play a pivotal role in the maintenance
of organismal homeostasis through their ability to differentiate,
redifferentiate, and support paracrine functions, immune regula-
tion, and metabolic modulation. These vital functions are
considered to be largely regulated by the stem cell lineage
in dWAT.

In this review, we highlighted the critical roles of dWAT in aging
and hypodermal homeostasis. We discuss the fundamental
mechanisms that trigger a cascade of molecular and cellular
changes in cutaneous tissue ages in response to both endogenous
and external stressors. These modulating factors work simulta-
neously to alter the biological behavior of hypodermis-resident
cells via multiple mechanisms. Although our knowledge of how
dWAT contributes to aging and homeostasis maintenance has
improved considerably, we still have limited knowledge about
how various factors regulate the complex functions of dWAT.
Owing to the rapid evolution of single-cell technologies, we can
now investigate the aging of adipose tissues by observing several
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cell types, but the complete picture is yet to be revealed. A
compendium of markers that can help study the functions of
human dWAT is lacking, especially when presenting key adipocyte
techniques associated with lipidomics, metabolomics, and pro-
teomics. Qualitative criteria for the assessment of adipocyte
proliferation and apoptosis are also absent.

At present, medical therapy only addresses the clinical
consequences of dWAT pathology, without targeting DWAT
function, thus impacting the physiology of the skin and associated
appendages. It is crucial to use existing medical methods in
interventions for delaying aging-induced changes in skin home-
ostasis and function in dWAT. Since adipose aging interventions
can protect against age-related illnesses and systemic aging,
additional investigations should be conducted to elucidate the
precise processes underlying fat aging and to establish a
theoretical framework for antiaging therapy.
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