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The average five-year survival rate for esophageal cancer, a common malignant tumor of the digestive system, is barely 20%. The
majority of esophageal squamous cell carcinoma (ESCC) patients had already progressed to a locally advanced or even advanced
stage at initial diagnosis, making routine surgery ineffective. Chemotherapy and immunotherapy are important neoadjuvant
treatments for ESCC, however, it remains unknown how treatment will affect the immunological microenvironment, especially at
the spatial level. Here, we presented the TME characters of ESCC from the temporal and spatial dimensions using scRNA-seq and ST,
investigated the changes of immune cell clusters in the TME under neoadjuvant chemotherapy and preoperative immunotherapy,
and explored the potential mechanisms. It was found that compared with chemotherapy, immunotherapy combined with
chemotherapy increased the level of T cell proliferation, partially restored the function of exhausted T cells, induced the expansion
of specific exhausted CD8 T cells, increased the production of dendritic cells (DCs), and supported the immune hot
microenvironment of the tumor. We also found that CD52 and ID3 have potential as biomarkers of ESCC. Particularly, CD52 may be
served as a predictor of the efficacy to screen the advantaged population of different regimens. Through multiple pathways, CAF2
and CAF5’s antigen-presenting role affected the other fibroblast clusters, resulting in malignant transformation. We analyzed the

immune microenvironment differences between the two regimens to provide a more thorough description of the ESCC
microenvironment profile and serve as a foundation for customized neoadjuvant treatment of ESCC.
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INTRODUCTION

Esophageal cancer has a very high incidence and mortality since it
is a common malignant tumor of the digestive system [1]. China
has a high prevalence of esophageal squamous cell carcinoma
(ESCQ), with new cases making over half of the annual global total
[2]. Due to the fact that many early ESCC symptoms are not readily
apparent and China has a low gastroscopy screening rate, the
majority of patients can only receive a late diagnosis [3, 4].
Currently, surgery has a limited impact in treating advanced ESCC;
instead, chemotherapy, immunotherapy, and radiotherapy are
frequently needed [5]. Immunotherapy and chemotherapy-based
ESCC clinical trials are currently ongoing and showing promising
results [6, 7]. Since immunotherapy’s success in treating advanced
ESCC, its function in adjuvant therapy and neoadjuvant therapy
has also received considerable attention. However, the composi-
tion and changes of the immune microenvironment after ESCC
treatment, the spatial distribution and interactions of various cell
clusters have not been clearly demonstrated.

Tumor microenvironment (TME) has steadily grown in popular-
ity as a study topic in recent years. Important TME constituents
include immune cells, fibroblasts, adjacent vascular tissue, and
extracellular matrix [8]. Tumor development, metastasis, and
medication resistance are all significantly influenced by the
ongoing interaction between tumor cells and TME [9]. Particularly
significant is the role played by immune cells in the TME, which
can either have anti- or pro-tumor actions. By examining gene
expression in a single cell, single-cell RNA-sequencing (scRNA-seq)
is a potent method for identifying cell variety [10]. SCRNA-seq
allows for a more convenient exploration of tumor heterogeneity
and its intricate relationship with the TME in the field of tumor
research [11, 12]. Additionally, by restructuring the intricate
relationships between immune cells, scRNA-seq may be able to
uncover potential immunological response mechanisms [13].
Spatial transcriptomics (ST) can be used to overcome some of
the shortcomings of scRNA-seq, such as the lack of spatial
information about tissue samples. ST is a method that was first
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used in spatiotemporal mapping in 2016 and allows for the
viewing and quantitative study of the transcriptome at a spatial
resolution in tissue slices [14, 15]. Furthermore, ST can examine
the intrinsic heterogeneity of tumor tissues and provide an
explanation for how TME changes in space [16]. Both the
identification of novel tumor biomarkers and the giving of
therapeutically beneficial advice for diagnosis and prognosis have
benefited greatly from ST [17].

This study used tumor tissues and matched adjacent normal
tissues from ESCC patients who had undergone neoadjuvant
chemotherapy and immunotherapy before surgery to examine the
changes in cell clusters and cell components of the tumor immune
microenvironment under different regimens. When immunother-
apy was added into the regimen, the amount of T cell proliferation
increased, the inactivation process of exhausted T cells was
partially reversed, and tumor development was pushed in the
direction of the immune heat microenvironment. It was found that
CD52 may be the potential biomarker for identifying privileged
groups. Meanwhile, the interconnections of various cell clusters
and their spatial linkages in the tumor site were examined. A more
detailed ESCC profile was developed to serve as the basis for
individualized ESCC neoadjuvant therapy, and patients with ESCC
may benefit more from different regimens in the future.

RESULTS

Single cell transcriptome map reveals tumor
microenvironment characters of ESCC patients treated with
two neoadjuvant regimens

We obtained tumor tissues (CA group) and adjacent normal
tissues (NC group) from three patients receiving preoperative
neoadjuvant chemotherapy and three patients receiving pre-
operative combination immunotherapy in order to map the
single-cell ESCC and reveal the difference in TME between
neoadjuvant chemotherapy (chemo-group) or neoadjuvant immu-
notherapy combined chemotherapy (immuno-group). These six
individuals had ESCC as their pathology diagnosis, and Table 1
displays their clinical details. Additionally, we also followed up
some ESCC patients who underwent surgery in our hospital from
December 2019 to June 2022, and the baseline statistics were
presented in Table 2.

First, scRNA-seq was carried out on all of the tissue samples’
isolated cells (Fig. TA). A total of 88951 cells (2876-12741 each
sample) were kept for further investigation after low-quality cells
were eliminated. Unsupervised clustering was used to assess the
cell composition profile in the microenvironment of ESCC tumor
tissue as well as adjacent normal tissue utilizing sequencing data
to systematically investigate these cell types. We did not batch
process the data to avoid improper removal of tumor hetero-
geneity. Nine major cell types, including epithelial cells, T cells,
mononuclear phagocytes (MPs), fibroblasts, endothelial cells (ECs),

mural cells, plasma cells, mast cells, and B cells, were successfully
recognized after being annotated using their canonical markers
(Fig. 1B). The annotation was consistent with how the nine
different cell types’ usual markers were expressed. (Fig. 1C). A
significant cell types were contributed to by each patient sample
(Fig. 1D). For example, chemo_2_NC was dominant in B cells and
mononuclear phagocytes, immuno_2_CA was dominant in T cells
and epithelial cells. Based on the aforementioned results, we
presented and described the complete ESCC transcriptome map,
laying the groundwork for an in-depth investigation of the
features of the ESCC microenvironment.

We observed significant heterogeneity in the cell makeup of
various samples by comparing the percentage of each cell type in
all tissue samples (Supplementary Fig. 1A). Next, the epithelial cells
with the highest percentage in the majority of tissue samples were
chosen for examination. Basal cells, secretory cells, keratinized
esophageal squamous cells, and cancer cells were identified as the
four main cell clusters of these cells (Supplementary Fig. 1B). Based
on heterogeneity, we defined cancer cells as clusters of epithelial
cells with high heterogeneity. Between clusters of epithelial cells,
we discovered significant differences in gene expression (Supple-
mentary Fig. 1C). The identity of these cancer cells was further
validated by CNV analysis, including amplification and deletion
(Supplementary Figure 1D). Additionally, Supplementary Fig. 1E
illustrated the robust activity and proliferative ability of cancer cells.
These findings validate our description of cancer cells by revealing
that malignant cells in epithelial cells are ESCC.

We integrated the scRNA-Seq data of all tissue samples (divided
into chemo_CA, chemo_NC, immuno_CA, and immuno_NC group)
to examine the differences in various cellular components as well
as the impact of two regimens on TME of ESCC. In the CA group,
epithelial cells made up the majority of cell subsets, whereas MPs
made up the majority of cell types in the NC group (Fig. 1E). The
immuno-group had a higher percentage of T cells and a lower
percentage of MPs when compared to the chemo-group. Then,
the whole cell subsets were divided into immune cell components
and non-immune cell components. In terms of immunological
components, we found that while the proportion of plasma cells
and T cells significantly increased in the CA group compared to
the NC group, the mast cell fraction significantly decreased
(Fig. 1F). Furthermore, we observed a considerable increase in the
proportion of T cells, indicating that the administration of
Sintilimab may cause peripheral T cell activation and subsequent
recruitment into tumors. According to a report, ESCC was one of
the cancer kinds with more MPs and T cells infiltrating but less B
cells entering when compared to other more common malig-
nancies [18]. This is compatible with our observations.

We explored the interactions among cell types in ESCC, as
shown in heat maps and shell maps (Fig. 1G, H). T cells interacted
most strongly with MPs, whereas fibroblasts interacted most
strongly with MPs, mural cells, endothelial cells, and epithelial cells.

Table 1. Clinical information of patients.

Number Gender Age range Pathological diagnosis
chemo_1 Male 66-70 ESCC

chemo_2 Male 66-70 ESCC

chemo_3 Male 60-65 ESCC

immuno_1 Female 71-75 ESCC

immuno_2 Male 60-65 ESCC

immuno_3 Male 60-65 ESCC

Histological grade Treatment regimens

moderately differentiation Nedaplatin+Paclitaxel
poorly differentiation Cisplatin-+Paclitaxel
moderately differentiation Cisplatin-+Paclitaxel

Nedaplatin+Paclitaxel+Sintilimab
Nedaplatin+Paclitaxel+Sintilimab

Nedaplatin+Paclitaxel+Sintilimab

moderately differentiation
poorly differentiation
moderately differentiation

All 6 patients received neoadjuvant chemotherapy or neoadjuvant immunotherapy combined with chemotherapy. These patients had not previously
undergone any other surgery or treatment. The pathological type was ESCC. Histological grade was moderate or low differentiation. The neoadjuvant
chemotherapy group was treated with nedaplatin or cisplatin combined with paclitaxel. Neoadjuvant immunotherapy combined with chemotherapy was

treated with nedaplatin, paclitaxel and sintilimab.
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Table 2. Baseline statistics of clinical data of follow-up ESCC patients.

Neoadjuvant chemotherapy (chemo

group)

Number, N 62
Gender, N (%)

Male 51 (36.2%)

Female 11 (47.8%)
Age, N (%)

> 60 38 (43.2%)

<60 24 (31.6%)
Weight, N (%)

> 70 7 (38.9%)

<70 16 (29.1%)

missing 39 (42.9%)
T stage, N (%)

T3 43 (44.3%)

T2 1 (16.7%)

T1 18 (31%)

missing 0
N stage, N (%)

NO 21 (34.4%)

N1 21 (42.9%)

N3 8 (40%)

N2 12 (36.4%)

Missing 0
Differentiated degree, N (%)

poorly differentiation 4 (33.3%)

medium-low differentiation 16 (40.7%)

medium differentiation 35 (35.6%)

high differentiation 1 (33.3%)

missing 6 (33.3%)
Pathological stage, N (%)

| 8 (39.1%)

Il 18 (29.6%)
1 28 (40.6%)

vV 8 (42.1%)
missing 0
Recurrence and metastasis, N
(%)
no 60 (39.5%)
yes 2 (16.7%)
Survival, N (%)
no 17 (34%)
yes 25 (35.2%)
missing 20 (46.5%)

Neoadjuvant immunotherapy combined P-value
chemotherapy (immuno group)
102

0.285

90 (63.8%)
12 (52.2%)

0.126
50 (56.8%)
52 (68.4%)

0.437
11 (61.1%)
39 (70.9%)
52 (57.1%)

0.138
54 (55.7%)
5 (83.3%)
40 (69%)
3 (100%)

0.827
40 (65.6%)
28 (57.1%)
12 (60%)
21 (63.6%)
1 (100%)

8 (66.7%)
29 (59.3%)
51 (64.4%)
2 (66.7%)
12 (66.7%)
0.769
19 (60.9%)
28 (70.4%)
41 (59.4%)
11 (57.9%)
3 (100%)
0.208

92 (60.5%)
10 (83.3%)
0.890
33 (66%)
46 (64.8%)
23 (53.5%)

Follow-up baseline statistics of ESCC patients who underwent surgical treatment between December 2019 and June 2022 summarized their gender, age,

differentiated degree, pathological stage, survival, and more.

In addition, MPs communicated with B cells, ECs, and epithelial
cells. The top 20 interaction partners are also included in Table 3.

Clustering and subtype analysis of T cells in ESCC tumors after
neoadjuvant chemotherapy or preoperative immunotherapy
We concentrated on investigating the immune microenvironment
modifications associated with ESCC and any potential regulatory

Cell Death and Disease (2024)15:663

pathways or mechanisms. First, we analyzed T cells, the main
lymphocyte population and important cytotoxic immune cells in
the tumor immune microenvironment. Out of a total of 1162 cells,
we performed unsupervised clustering of T cells from all samples
and found four CD4 clusters, two CD8 clusters, and one NK cells
cluster (Fig. 2A). Figure 2B depicted the top differentially
expressed genes (DEGs) for each cluster. The known functional
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Fig. 1 Single cell transcriptome map and major cell types in ESCC tumor microenvironment. A Single cell sequencing process. B Cell types
and UMAP of all samples. € Heat maps of typical marker gene expression by cell types. D The proportional contribution of tissue samples to
each cell type. E Proportion of each cell type in the four groups. F Proportion of immune cell components in four groups. The interactions
between cell types shown in the form of (G) heat map and (H) shell map. P < 0.05. *P < 0.05; **P < 0.01; ***P < 0.001.
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Table 3. The top 20 interaction pairs between cell types.

Ligand cell Receptor cell Ligand gene Receptor gene Secreted
Epithelial cells T cells TNFSF9 TNFRSF9 \
Fibroblasts Fibroblasts DPP4 CCL11 N
Mast cells Fibroblasts ADCYAP1 DPP4 \
Epithelial cells B Cells TNFSF9 ADGRG5 \
T cells Epithelial cells XCL1 ADGRV1 N
ECs Epithelial cells PDGFB ADGRV1 N
Mural cells ECs CcCL8 ACKR1 N
ECs Fibroblasts PDGFB PDGFR \
B cells T cells TNFRSF13B CD70 N
Epithelial cells| Plasma cells CDH1 aEb7 X
ECs Fibroblasts PDGFB PDGFRA \
Epithelial Cells ECs COL9A3 alob1 N
Epithelial cells ECs EFNA3 EPHA4 X
Fibroblasts ECs COL16A1 al0b1 \
Epithelial cells ECs EFNA4 EPHA4 N
Fibroblasts ECs COL10A1 al0b1 N
Fibroblasts ECs VEGFD KDR \
Fibroblasts ECs COL4A4 al0b1 N
Epithelial cells Mast cells PLXNB1 SEMA4D \

Interaction pairs between cell types in ESCC was explored and the top 20 interaction pairs was displayed. Ligand cells, receptor cells, ligand genes and

ugu

receptor genes are labeled separately. If the interaction is in the form of secretion, it is “V*, otherwise it is “x".

markers were used to suggest CD4 and CD8 T cells, including
naive, exhausted T cells, and Tregss, as well as marker genes for
cytokines, co-stimulators, and immune checkpoints (Fig. 2C). CD4-
C1-CCR7 and CD4-C2-IL7R carried the most classic naive signature
CCR7 and IL7R. TCF7, LEF1, and SELL were also expressed at high
levels. FOXP3, IL2RA, CTLA4, and IKZF2 were highly expressed Treg
characteristic markers on CD4-C3-FOXP3. The co-stimulatory
markers, including TNFRSF9, ICOS, and CD28, were likewise
strongly expressed in this cluster. CD4-C4-MKI67 were character-
ized by both naive and Tregs, with high expression of SELL, LEF1,
and ITGAE. It is interesting to note that CD4-C4-MKI67 had
significant levels of MKI67 expression, indicating great prolifera-
tive potential. Two CD8 T clusters had high levels of the cytokines
IFNG, GZMA, and NKG7 as well as the checkpoint molecule genes
LAG3, TIGIT, PDCD1, HAVCR2, and CLTA4, which were indicative of
the phenotypes of exhausted cells. Based on a study [19], IFNG
and GZMB were two cytotoxic signatures that are strongly
expressed in exhausted CD8 T cells in addition to TNF and IL2.
This expression was also shown in CD8-C1-LAG3 and CD8-C2-
MKI67. The cell cycle-reflecting genes MKI67, CDKN3, and CCNB1
were highly expressed in CD8-C2-MKI67. These two clusters,
however, also displayed elevated CXCL13 expression, demonstrat-
ing that they were tumor-associated infiltrating CD8 T cells. NKT-
C1-XCL2 was the sole NK cell collection. In addition to highly
expressed cytotoxic signatures like NKG7, GNLY, and GZMB, as
well as transcription factors like ZEB2, TBX21, and EOMES, this
cluster also contained highly expressed NK cell markers including
KLRD1, FCGR3A, and KLRCT.

For aiding with identification, various public signatures were
applied to T cell clusters, and scores were computed (Fig. 2D). It
was observed that the exhaustion scores of CD8-C2-MKI67, CD8-
C1-LAG3, and CD4-C4-MKI67 were greater. It is interesting to note
that compared to the other groups, CD4-C4-MKI67 and CD8-C2-
MKI67 both had much higher proliferation scores. In terms of cell
cycle proportion, these two clusters likewise showed high levels of
proliferation (Fig. 2E). This is in line with a recent study that found
the exhausted T cells to be a significant immune cell compartment

Cell Death and Disease (2024)15:663

that proliferates in malignancies [20]. It was also discovered that
CD8 T cells greatly outperformed CD4 T cells in terms of
cytotoxicity. According to a study, CD8 T cells that were highly
expressed in cytotoxic genes also exhibited high levels of the NK
cell receptor markers KLRD1, KLRC1, and KLRC2. In CD8-C1-LAG3
and CD8-C2-MKI67, the same pattern was identified.

To confirm these clusters’ possible roles, KEGG functional
enrichment analysis was carried out (Supplementary Fig. 2A).
Two immune checkpoint markers CTLA4 and PDCD1 were
detected to explore their expression in each T cell clusters
(Supplementary Fig. 2B). Except for NKT-C1-XCL2, all clusters that
we examined expressed CTLA4, but CD4-C3-FOXP3 had the
highest level, suggesting that CTLA4 was a key player in the
immunosuppression of Tregs. Evidently, PDCD1 participated in the
process of T cell exhaustion because it was only expressed in CD8-
C1-LAG3. It was reported that PD-1 was significantly expressed in
exhausted CD8 T cells, and in contrast to CTLA4 blocking, the
effect of PD-1 blocking may be concentrated in remaining tumor
T cells [21].

The changes in the proportion of T cells were next examined. In
Supplementary Fig. 2C, the clusters from all tissue samples were
displayed. After the combination, we found that the NC group had
a higher percentage of naive T cells (CD4-C1-CCR7 and CD4-C2-
IL7R) (Fig. 2F). The immuno-group had a larger percentage of
naive T cells than the chemo-group, indicating that the admin-
istration of immunological medicines boosted T cell proliferation.
Additionally, we found that CD8-C2-MKI67, a cluster with high
PDCD1 expression, was higher in the CA group compared to the
NC group, particularly in the immuno-group compared to the
chemo-group. This finding suggests that Sintilimab may reverse T
cell exhaustion and induce specific tumor infiltrating exhausted
CD8 T cell. The difference between the proportions of Tregs (CD4-
C3-FOXP3) in the immuno- and chemo-groups could be explained
by Sintilimab’s ability to prevent Treg growth. The proportion of
NK cells in the CA group reduced as compared to the NC group,
indicating that there weren’t enough NK cells and that their
function was compromised in ESCC. Considering to the above

SPRINGER NATURE
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findings, the clinical administration of the PD1 inhibitor Sintilimab
reversed the exhausted T cells, partially restored T cell function,
and enhanced the tumor’s immune hot environment.

The potential developmental pathways of cell conversion were
built using Monocle 2 to study the cell transitions (Supplementary
Fig. 2D). CD4-C3-FOXP3, CD4-C4-MKI67, and CD8-C2-MKI67 were
found in the medium and end stages of differentiation, whereas
CD4-C1-CCR7, CD4-C2-IL7R, and NKT-C1-XCL2 were largely dis-
persed in the early stage of differentiation. Using the RNA rate
diffusion diagram in conjunction, we found that some CD4-C2-
IL7R differentiated into CD8-C1-LAG3 and some CD4-C1-CCR7
differentiated into CD4-C3-FOXP3 (Fig. 2G). In the middle and end
stages, CD4-C3-FOXP3 differentiated into CD4-C4-MKI67, and the
latter differentiated even more into CD8-C2-MKI67. Moreover, it
was discovered that IGHA2, IGKC, IGLC2, JCHAIN, and other genes
were strongly expressed at the end of development, whereas
FABP4, FABPS5, LY6D, and other genes were significantly expressed
in the beginning of development (Supplementary Figure 2E).
Meanwhile, we observed that naive T cells in the immuno-group
were stacked in front of the “fork in the road” leading to the fate of
CD4 or CD8 T cells, and the majority of them ended up in
exhausted CD8 T cells, but naive T cells in the chemo-group
largely ended up in CD4-C3-FOXP3 and CD4-C4-MKI67 (Fig. 2H).
The aforementioned findings imply that T cell clusters are not
entirely independent but may be in a broad state of mutual
change, and studies that support our hypothesis can be found 75.
We also analyzed transcription factors (TFs) and found significant
differences in regulatory networks between chemo_NC group and
immuno_NC group (Supplementary Figure 2F).

Construction of CD4 T cell risk score model
T cells in the TME are crucial in either promoting or inhibiting the
growth of tumors. It was reported that CD4 T cells and the
prognosis of tumor patients were associated. Then, in hopes to
facilitate clinical treatment, we constructed a risk score model
using the DEGs of CD4 T cells. First, using the ESCC transcriptome
data from TCGA, we developed the model and then screened the
371 CDA4 T cell marker genes for genes with |LogFC | > 0.5, P < 0.01.
By using univariate Cox analysis and LASSO regression analysis,
four genes—HSPH1, ATF3, NDUFB3, and HISTTH1E—were identi-
fied, and the risk score for each patient was determined (Fig. 3A-C).
We split the ESCC patients in the TCGA database into low-risk
and high-risk groups based on their median risk scores, and the
high-risk group’s overall survival time was considerably shorter
than that of the low-risk group (Fig. 3D). Figure 3E, F displayed the
risk and survival scores for each patient with ESCC. The expression
levels of four genes in each patient were depicted on the gene
heat map (Fig. 3G). The DEGs between the two groups were
associated with immunoregulatory pathways like antigen binding,
humoral immune response mediated by circulating immunoglo-
bulin, immune response regulating cell surface receptor signaling
pathways, and lymphocyte-mediated immunity, according to
GSEA enrichment analysis (Fig. 3H). To calculate the risk scoring
model’s accuracy, we employed the time ROC curve. Patients with
ESCC had AUC values of 0.704, 0.736, and 0.953 at 1, 3, and 5 years,
respectively (Fig. 3lI). Four prognostic genes’ expression levels
significantly distinguished patients in the low-risk group, accord-
ing to PCA analysis (Fig. 3J). The information shown above clearly
demonstrates that our CD4 T cell risk score model’s prognosis is
reliable. We also conducted IHC on HSPH1 (Fig. 3K). According to
the findings, the CA group had higher levels of HSPH1 expression
than the NC group (Fig. 3L). The expression level of HSPH1 did not
significantly differ between the two treatments.

ID3 and CD52 serve as markers to predict the efficacy of two
neoadjuvant treatment regimens for ESCC

We compared T cells between the chemo-group and the immuno-
group to investigate DEGs under two regimens and their possible
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function in TME. First, the DEGs between the immuno_CA group
and the immuno_NC group, as well as between the chemo_CA
group and the chemo_NC group, were examined (Fig. 4A). When
up-regulated and down-regulated DEGs in the chemo_CA group
and immuno_CA group were intersected, a total of 272 DEGs and
178 DEGs were found in the up-regulated group, respectively. ID3
and CD52 are two of these DEGs that have captured our interest.
ID3 is involved in various cellular processes, including apoptosis,
angiogenesis, and tumor transformation [22]. The LEF1/ID3/HRAS
axis has been linked to several research’ findings that it can
encourage the emergence and progression of ESCC [23]. On the
surface of mature lymphocytes, neutrophils, macrophages, DCs,
and other immune cells, CD52 is abundantly expressed [24, 25]. In
addition, it has been noted that CD52 is shed from the cell surface
and remains in the blood; these soluble CD52 molecules may be
employed as biomarkers for biological detection [24].

ID3 and CD52 expressions were found in both normal and
malignant tissues. In the GEPIA database, it was demonstrated
that tumor tissues had higher levels of ID3 and CD52 expression
than normal tissues (Fig. 4B). We investigated whether the
expression of ID3 and CD52 was related to cancer features using
the UALCAN database. The expression levels of ID3 and CD52
gradually increase as the degree of ESCC differentiation declines,
suggesting that the degree and progression of ESCC differentia-
tion may be assessed by the expression levels of ID3 or CD52
(Fig. 4C). Additionally, we found that ESCC patients with lymph
node metastases frequently had higher ID3 and CD52 expressions
than ESCC patients without lymph node metastasis (Fig. 4D). The
TCGA database showed that high levels of ID3 and CD52
expression were linked to a poor prognosis in ESCC patients,
indicating that these proteins may be oncogenes in ESCC and
have the ability to act as prognostic indicators (Fig. 4E).

The roles of these two genes in the immunological microenvir-
onment of the ESCC were then investigated in connection to
immune cells. In breast invasive carcinoma, adrenal cortical
carcinoma, adrenal carcinoma, and a variety of malignant tumors,
including ESCC, we discovered that ID3 was positively correlated
with many immune cells (CD8 T cells, NK cells, DCs, macrophages,
etc.), whereas CD52 was significantly positively correlated with all
immune cells in almost all malignancies, and ESCC was no
exception (Supplementary Fig. 3A). The link between the
expression of ID3 and CD52 in ESCC and the infiltration of
different immune cells was confirmed using the TIMER database
(Fig. 4F). We noticed that the presence of NK cells, effector
memory T cells, plasmacytoid DCs, type 1 helper T cells, and
macrophages was positively linked with ID3. T cells, cytotoxic cells,
CD8 T cells, Tregs, DCs, macrophages, NK cells, and other immune
cell infiltration were all positively linked with CD52. Activated
T cells, central memory T cells, effector memory T cells, Tregs,
macrophages, and other immune cell components were all
strongly correlated with CD52, according to the TISIDB database,
which further demonstrated that CD52 was likely involved in the
immune regulation process in the TME of ESCC (Supplementary
Fig. 3B). We assessed the level of immune infiltration of ID3 and
CD52 in ESCC using the ESTIMATE method (Fig. 3G). It was found
that immune infiltration and matrix component levels were much
higher when CD52 was abundantly expressed, indicating that
CD52 increased the invasiveness of ESCC. The existence of matrix
in tumor tissue and higher tumor purity were solely indicated by
the high expression of ID3, which did not imply a connection with
the aggressiveness of ESCC.

To determine the expression of CD52 in ESCC tissue samples,
IHC were performed (Fig. 3H). Regardless of the treatment, the CA
group’s CD52 expression level was higher than that of the NC
group (Fig. 3l). In the immuno-group, CD52 expression was lower
than it was in the chemo-group, suggesting that Sintilimab
inhibited CD52 expression. These findings imply that ID3 and
CD52, particularly CD52, which is strongly associated to the tumor
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immune milieu, are favorably correlated with immune cells and
immune infiltration in ESCC. Both of them have the potential to be
prognostic indicators of ESCC and may function as oncogenes in
the development of ESCC.

Clustering and subtype analysis of MPs

We then examined the MPs found in immunological cells. Out of a
total of 18392 cells, we unsupervisedly clustered MPs from all
samples and found four clusters. Monocytes, macrophages, DCs,
and a distinct cluster of MPs (MPs-C1-MKI67) with classical
proliferative marker genes made up this group (Fig. 5A). Figure
5B displayed each cluster's top DEGs. The macrophage, which
made up the majority of these cells and accounts for 65.8% of MPs
(Supplementary Fig. 4A), had seven distinct cell clusters. We
distinguished each cell cluster based on the expression of
particular genes. For example, the three DC clusters were
categorized as mature dendritic cells (mDCs), type Il classical
dendritic cells (cDC2), and type | classical dendritic cells (cDC1).
MPs that express MKI67 and TOP2A strongly were categorized as
proliferating MPs (proMPs). The elevated expression of CD83,
CCR7, and LAMP3 in mDCs was consistent with research on
osteosarcoma. Tumor-associated CD83 + CCR7 + LAMP3+4 DCs
were found to selectively express in tumor tissue [26]. The mDCs
had active state, indicating that this cluster was a mature
regulatory DCs, and were much more mature than ¢DC1 and
cDC2 in terms of migration and regulatory abilities (Fig. 5C). A
variety of invading T cells may be recruited by mDCs, which
selectively expressed CCR7, CCL17, and CCL22 (Supplementary
Figure 4B). In Supplementary Figure 4C, the makeup of each
cluster in all tissue samples was presented. Comparing the
immuno- and chemo-groups, it was found that the immuno-
group had a reduced percentage of macrophages (Fig. 5D).
Compared with the NC group, the CA group had a larger
percentage of proMPs. The proportion of DCs was larger in the
immuno-group compared to the chemo-group, which may be
explained by the fact that immunotherapy caused the tumor’s
immune system to become more active, and that more DCs were
needed to cause a CD4 T cell response.

Monocytes and ¢DC2 were found in practically every stage,
macrophages were more prevalent in the early and end stages of
differentiation, and proMPs and mDCs were concentrated at the
end stages of differentiation, according to the pseudo-time
analysis (Supplementary Fig. 4D). The MP clusters in the CA group
were more heavily concentrated in the middle and end stages of
differentiation when compared to the NC group. Between the
chemo- and immuno-groups, no discernible variations in differ-
entiation were revealed. Furthermore, it was found that LILRB5,
CD99, and other genes were strongly expressed at the conclusion
of development, while HSP90AA1, SPP1, and other genes were
substantially expressed at the beginning of the development
trajectory (Supplementary Fig. 4E).

Numerous studies on TAMs have been published recently,
which reveal a wide range of TME characteristics. Depending on
their functional traits and the quantity of inflammatory substances
they secrete, macrophages can be classified as M1 macrophages
or M2 macrophages. To ascertain the phenotypes of seven
clusters, we utilized the public signatures of these two macro-
phage types (Supplementary Fig. 4F). It was observed that
macrophage clusters 1, 6, and 7 had higher M1 phenotype scores
than other clusters, whereas macrophage clusters 2, 3, and 5 had
higher M2 phenotype scores than other subgroups. In contrast,
the M2 phenotype score of all clusters was higher overall.

Based on a study, tumor cells overexpressed CD47 and PD-L1
(CD274) to evade immune cell clearance [27]. Combining with
CD24 to deliver the “do not eat me” signal, CD47, an immune
checkpoint receptor that is frequently dysregulated in malignant
tumors, inhibits macrophage-mediated phagocytosis. We found
that CD24 and CDA47 expression in macrophages was much

SPRINGER NATURE

stronger than CD274 expression, indicating that macrophage-
mediated immunological escape rather than T cell-mediated
immune escape was implicated in ESCC (Fig. 5E).

We repeated unsupervised macrophage clustering and found
five clusters in a total of 12104 cells by defining the tumor
associated tumors (TAMs) cluster gene sets according to various
functions (Fig. 5F). They are resident-tissue macrophage-like TAMs
(RTM-TAM:s), lipid-associated TAMs (LA-TAMs), interferon-primed
(IFN-TAMs), inflammatory cytokine-enriched TAMs (Inflam-TAMs),
and proangiogenic TAMs (Angio-TAMs). Although the expression
of the typical markers for these five clusters was consistent with
the annotation, similar circumstances in the expression of these
DEGs suggested that the clusters might be in a state of mutual
change or transition (Fig. 5G).

Although the proportion of Inflam-TAMs was lower in the
immuno_CA group compared to the immuno_NC group, it was
higher in the chemo_CA group than the chemo_NC group,
indicating that the use of immunotherapy may lessen the
likelihood of an inflammatory response (Fig. 5H). Compared with
the NC group, the proportion of RTM-TAMs in the CA group was
less, indicating that the cluster was indeed enriched in adjacent
normal tissues as reported in the study [28]. In comparison to the
chemo-group, the immune group had fewer RTM-TAMs. LA-TAMs
had a role in M2 macrophage function in TME, which may have an
inhibitory influence on immunological response. The proportion of
LA-TAMs in the CA group was considerably higher than that in the
NC group.

Analysis of fibroblast clusters and CAF in ESCC after two
neoadjuvant treatment regimens

The ESCC matrix components were then investigated. First, we
used unsupervised clustering to find six clusters out of a total of
4223 fibroblasts from all samples (Fig. 6A). Fibroblast clusters 1
and 2 were the most prevalent among them, accounting around
30% of all fibroblasts. Each cluster’s top DEGs were illustrated in
Fig. 6B. Obviously, the chemo_NC group contributed more cells
in fibroblast cluster 1, 3, and 4, while the CA group contributed
more cells in fibroblast cluster 2 and 5 (Supplementary Fig. 5A).
We noticed that the proportion of fibroblast cluster 2 and 5 in
the CA group was higher than that in the NC group
(Supplementary Fig. 5B). In the CA group, fibroblast clusters 1,
3, and 4 accounted for a smaller percentage. These findings
indicate that fibroblast clusters 2 and 5 might be cancer-
associated fibroblasts (CAFs). To identify the fibroblast clusters,
various public signatures were applied, and scores were
computed (Fig. 6C). We hypothesized that fibroblast clusters 2
and 5 in the TME were CAFs after it was shown that they scored
highly on extracellular matrix remodeling fibroblasts, myofibro-
blasts, and proliferating fibroblasts.

Then, utilizing the known functional markers, such as the CAF
markers, inflammation-associated fibroblasts markers, Wnt signal-
ing pathway indicators, MHC-I markers, and MHC-II markers, we
investigate more closely at the probable role of these fibroblasts
(Fig. 6D). It was determined that MMP3, MMP11, and FAP—classic
indicators of CAF—were substantially expressed in fibroblast
clusters 2 and 5. Additionally, IL24, CCL2, CCL5, and chemokines
with the C-X-C pattern were expressed at higher levels in
fibroblast cluster 2 compared to other clusters. The above results
confirmed that fibroblast cluster 2 and 5 were CAFs, which played
a role in promoting ESCC progression in TME, and then we
referred to them as CAF2 and CAF5. Also, we found that CAF2 up-
regulated Wnt signaling pathway genes such WNT2 and WNT5A
while down-regulating the expression of Wnt signaling inhibitor
SFRP1, which was consistent with findings from the research on
CAFs for gastric cancer [29]. MHC-l genes were considerably up-
regulated in CAF2 and CAF5, whereas MHC-Il genes were down-
regulated, indicating a change in the antigen-presenting function
of CAFs.
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fibroblast clusters in four groups. P < 0.05. *P < 0.05; **P < 0.01; ***P < 0.001.

According to the pseudo-time analysis, fibroblast clusters 1, 3,
and 6 were concentrated in the early stages of differentiation,
while cluster 4 was present at every stage, and CAF2 and CAF5
were more evenly distributed in the middle and end stages
(Supplementary Fig. 5C). It was found that CAF5 evolved into CAF2
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in the middle stage of differentiation, and a tiny portion of it was
differentiated from fibroblast clusters 1 and 4 when combined
with the RNA rate diffusion diagram (Fig. 6E). It was also
discovered that GSB, DCN, and CLU were highly expressed at
the start of the development trajectory while PLAT, IGFBP2,
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MMP11, and WNT5A were highly expressed at the end of
development, suggesting that they may be involved in the
conversion of normal fibroblasts into CAFs and promote the
progression of the tumor (Supplementary Figure 5D). The NC
group had a higher concentration of fibroblasts in clusters 3 and 4,
which differentiated in the direction of branch 2, while the CA
group had a higher concentration of CAF2, which was concen-
trated in branches 1 and 2 (Fig. 6F). The chemo_CA group was
more distinct from the immuno_CA group in the direction of
branch 2.

We observed discrepancies between CAF2 and CAF5 in the TF
analysis (Supplementary Fig. 5E). E2F8 and E2F7 dramatically
decreased in CAF2 but significantly increased in CAF5, indicating
that CAF5 had a greater capacity for proliferation than CAF2. In
addition, we investigated the relationship between CAF and other
cells and discovered that CAF2 controlled other fibroblast clusters
via RARRES2-GPR1, CCL1-DPP4, and other pathways (Supplemen-
tary Fig. 5F). While CAF5 regulated other fibroblast clusters
through the PDGFC-PDGFRA and WNT5A-ANTXR1 pathways, and
influenced TAMs through the RARRES2-CMKLR1 pathway.

Exploration of spatial distribution of immune cells in ESCC
following neoadjuvant therapy

The tissue sections of chemo_CA, chemo_NC, immuno_CA, and
immuno_NC were chosen for ST analysis to more thoroughly
define the transcriptome profile of ESCC and exhibit the spatial
distribution information of TME. The division of the histopatho-
logic regions was depicted in Supplementary Figure 6. Four tissue
samples had a total of 2892, 2673, 3845, and 2954 spots,
respectively, with a range of 1011 to 2084 genes being detected
by each spot’s median number. Space Ranger software was used
to carry out a quantitative and quality control study of gene
expression (Supplementary Fig. 7A, B). The spot clustering findings
were shown using the UMAP algorithm for dimensionality
reduction analysis to retain more global structure data (Supple-
mentary Fig. 7C). As seen in Supplementary Fig. 7D, assign the
tissue sections to the spots clustering information using the spatial
barcode. Cell types were identified at the spatial level using the
deconvolution method (Fig. 7A). These samples’ cell type
distribution matched that of the nine cell types identified by our
scRNA-seq. Epithelial cells made up the majority of cell types in
both groups. We essentially identified the primary cell types
distributed in each part of the tissue sample by the expression of
defining genes in spatial regions and the application of
deconvolution. To analyze the relationship between each cell
cluster and spatial region, the most thorough and understandable
spatial distribution data was first acquired.

In the beginning, we focused on the spatial distribution of some
typical marker genes and immunological checkpoints. It appeared
that T cells in the CA group had a more equal distribution
throughout the tumor region, dispersed among the tumor cells,
and had a greater expression level at the point where the tumor
region and other regions met. T cells were more evenly distributed
in the NC group at the intersections of several tissue regions and
in T cell clusters that might be brought on by inflammation (Fig.
7B). In our investigation of the immune checkpoints’ spatial
distribution, we found that ENTPD1 was extensively dispersed. It
was sparsely distributed with a high expression level in the normal
tissue region but densely distributed with a low expression level in
the tumor region (Fig. 7C). The expression level increased with
distance from the tumor region. The distribution of ENTPD1 was
denser with a higher level in the immuno_CA group compared to
the chemo_CA group. The fact that ENTPD1 is extensively
expressed in vascular endothelial cells and fibroblasts in TME of
ESCC in addition to immune cells like Treg, NK cells, and
macrophages may account for its widespread dispersion. LAG3
and TIGIT were more widely dispersed in the tumor location, and
their expression levels rose with increasing distance from the
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tumor. PDCD1 and CTLA4 were scattered sporadically in the tumor
region with T cell aggregation, and they were more widely
distributed in the CA group than the NC group. Similar to PDCD1
and CTLA4, which were scattered across the tumor region with
evident T cell aggregation, CXCL13-CXCR5 had a similar spatial
distribution. CXCL13 was much more prevalent than CXCR5 in all
other groups (Fig. 8A), with the exception of the immuno_NC
group, where their expression could not be seen. The expression
level of CCL5-CCR5 was much higher than that of the tumor
region, and it also exhibited T cell aggregation. CCL5-CCR5 was
broadly dispersed in the tumor region and less so in the normal
tissue region. Additionally, we investigated the study’s predictive
indicators and looked at the spatial distribution traits of ID3 and
CD52. It found that CD52 and ID3 were broadly dispersed
throughout the four tissue samples, with a relatively low level of
sparse distribution in the normal tissue region and a relatively
high level of sparse distribution in the tumor region (Fig. 8B). Also,
T cell focal aggregation showed significant CD52 expression.

For the purpose of precisely locating the various cell clusters in
space and elucidating the spatial relationships between them, we
performed scGSEA scores on ST samples using the DEGs acquired
by scRNA-seq. In the tumor tissue region, we first observed that
CD8 T cells were widely distributed and infiltrated (Supplementary
Fig. 8A and 9A). ESCC is currently immune-hot tumor and is more
responsive to immune checkpoint inhibitors when the results of
the analysis discussed above are taken into account. It was found
that the spatial distribution of CD4-C1-CCR7 overlate with that of
macrophages, particularly in the chemo_CA group (Supplemen-
tary Fig. 8C). In the immuno_CA group, there was less spatial
overlap between CD4-C1-CCR7 and macrophages (Supplementary
Fig. 9A, Q). It might be because the chemo_CA group has tightly
packed plasma cells, which enhanced their spatial interaction.
Interestingly, in both the chemo_CA group and the immuno_CA
group, another naive T cell cluster, CD4-C2-IL7R displayed a
mutually exclusive condition with macrophages (Supplementary
Fig. 8A and 9A).

We found that the spatial distribution of CD4-C3-FOXP3, NKT-
C1-XCL, and DC in any group strongly overlapping. Furthermore,
the regional distributions of CD4-C3-FOXP3 and Angio-Tams in the
CA group were comparable, indicating that the HIF-1 signaling
pathway may be employed to create a communication link
between them. The chemo_CA group’s relationship between the
two clusters was stronger than it was in the immuno_CA group,
which suggested that immunotherapy might be a useful strategy
for improving the hypoxic environment in TME. In the CA group,
proMPs, LA-TAMs, CD4-C4-MKI67, and CD8-C2-MKI67 were all
distributed very densely in space. The spatial distribution of these
two exhausted T cell clusters was highly overlapping with that of
CAF2 and CAF5 in the chemo_CA group, which were also
obviously situated in the tumor location. However, in the
immuno_CA group, CAF2 does not exhibit this spatial distribution,
which may be explained by the immunotherapy’s reduction of the
inflammatory response in the tumor locations. In the chemo_CA
group, but not in the immuno_CA group, there was a strong
correlation between the spatial distribution of RTM-TAMs and
cDC1. A tendency toward tumor region dispersion was also
present in fibroblast cluster 6, which was more pronounced in the
chemo_CA group than in the immuno_CA group.

Finally, we explored the strongest interactions between the four
samples, and Fig. 8C displays the top 50 rankings. LAMP3-FAM3C
primarily affected plasma cells, fibroblasts, and epithelial cells along
the tumor margin in the chemo_CA group. The immuno_CA group,
which mostly worked on epithelial cells in normal epithelial regions
bordering malignancies, contained the EFNA1-EPHA2 protein. The
NC group had both DSC2-DSG1 and these molecules interacted in
the epithelial cells of the normal epithelial area. According to a
report, EGFR and HER2 can dimerize with EPHA2 to modify
downstream signals and undergo malignant transformation [30].
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This shows that EFNA1T-EPHA2 in immuno_CA may contribute to
malignant progression, including as the proliferation and metastasis
of tumor cells, and that reducing its expression or blocking
endogenous activation of EFNA1-EPHA2 regulatory axis may play a
role in tumor inhibition.

Here, we report the TME of ESCC from the two dimensions of
time and space using scRNA-seq and ST. The differences in
immune cell types and components in TME under the two
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regimens were explored, and the underlying causes or mechan-
isms were investigated, through the comparative analysis of
tumor tissues and matched adjacent normal tissues of patients
receiving preoperative neoadjuvant chemotherapy and preopera-
tive immunotherapy combined chemotherapy. To identify poten-
tial indicators for diagnosis and prognosis, it was also investigated
how distinct cell clusters interacted with one another and were
distributed spatially. This will establish the foundation for the
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future development and implementation of novel ESCC diagnosis
and immunotherapy approaches.

DISCUSSION

The immune cell components in TME against tumor cells mainly
involve effector T cells, NK cells, macrophages, DCs, which play
killing roles through direct contact or indirect pathways [31-33]. In
some cancers, tumor cells bind to PD-L1 ligands to inhibit the
activation of CD8 T cells, a well-known immune escape mechan-
ism. In addition, malignant progression occurs when CD8 T cells
are in a state of exhaustion [34]. In our study, we identified two
CD8 T cell clusters and four CD4 T cell clusters from T cells, which
highly express cytokines IFNG, GZMB, NKG7, and checkpoint
molecular genes LAG3, TIGIT, PDCD1, CLTA4, with obvious
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characteristics of exhausted T cells. Interestingly, some canonical
cell cycle genes, such as CDKN3, CCNB2 and CCNB1, were highly
expressed in the CD8-C2-MKI67. A study in 2020 reported as
follows [35]: According to Ly108 and CD69, the development
framework of was elaborated, and it was divided into four stages,
namely, progenitor 1, progenitor 2, intermediate and terminal.
Among them, the progenitor 2 stage is characterized by Ly108 +,
which is in a proliferative state and has the ability to enter the
blood, and the preferentially upregulated genes are enriched in
the cell cycle, such as CDK1, CCNA2, and MKI67. It is suggested
that CD8-C2-MKI67 is probably in the progenitor 2 stage.
Furthermore, CD8-C2-MKI67 and CD4-C4-MKI67 both had very
high proliferation scores, suggesting that exhaustion T cells was
the main proliferating immune cell compartment in ESCC. Tregs
are also an important part of the immune profile in TME, a key role
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in maintaining immune homeostasis. Inhibition of FOXP3+Tregs
in TME can prevent CD8 T cells from effectively responding to
tumor cells [36]. It was found that the proportion of CD4-C3-
FOXP3 in the immuno-group decreased compared with the
chemo-group, indicating that immunotherapy inhibited the
proliferative function of Treg.

We used CD4 T data to select four genes, HSPH1, ATF3, NDUFB3
and HISTTH1E, to construct a risk score model for judging the
prognosis, which may guide the clinical treatment of ESCC.
Among these four genes, relatively more studies have been
conducted on ATF3, a TFs member of the ATF/CREB family. It
participates in cellular processes to adapt to extracellular and/or
intracellular changes, and transduces signals from various
receptors to activate or inhibit gene expression [37]. It was
reported that ATF3 had prognostic significance as a novel tumor
suppressor in ESCC, and it can inhibit ESCC through down-
regulation of ID1 [38, 39]. In our study, we found that compared
with the NC group, the expression of ATF3 was up-regulated in the
chemo_CA group, while down-regulated in the immuno_CA
group, indicating that immunotherapy may inhibit the expression
level of ATF3 through some unknown mechanism or pathway. In
addition, we found that ESCC patients with high ATF3 expression
had poor prognosis, and the expression level increased with the
progression of ESCC stage, suggesting that ATF3 has the potential
to serve as a biomarker. The role of other three CD4 T marker
genes in ESCC needs to be solved urgently. Meanwhile, we also
found two potential biomarkers in the immune profile, ID3 and
CD52, which may assist in determining the prognosis of ESCC. ID3
has been found to be strongly associated with the anti-tumor
effects of macrophages [40]. In addition, it can inhibit the
exhaustion of anti-tumor CD8 T cells in liver cancer [41]. In short,
ID3 has a regulatory role in a variety of cancers, acting as a bridge
in the immune system [42, 43]. It was reported that the immune-
related gene CD52 was a prognostic biomarker for breast cancer,
melanoma [44, 45]. With further investigation, we believe that its
predictive role in ESCC will be well reflected and applied in the
clinic.

Two intriguing unusual clusters proMPs and mDCs were found
in the MPs clusters. The primary proliferative elements in MPs
should be ProMPs with significantly high expression of MKI67 and
TOP2A, which accounted for a greater proportion in CA group.
Mature mDCs specifically expressed CCR7, CCL17 and CCL22 to
recruit infiltrating T cells, which transduced immune signals and
recruits peripheral T cells in TME with strong migration and
regulatory capabilities, thus playing an anti-tumor role. It may be a
therapeutic target for ESCC in the future.

Nowadays, researchers have a deeper understanding of
macrophages, whose types are not limited to M1 and M2 [46].
TAMs can restrict T cell function by producing immunosuppressive
factors including TGFB and IL10. Recently, it was confirmed that
high density of TAMs in ESCC was associated with shorter survival
of patients, indicating that TAMs may become a prognostic
biomarker for ESCC [47]. In this study, macrophages were
subdivided into five subgroups. IFN-TAMs are highly expressed
in CXCL10, ISG15, PD-L1, and M1 macrophage markers such as
CD86 and MHC-II [48]. However, unlike M1-type macrophages,
IFN-TAMs generally play an anti-tumor role and inhibit the
immune response by degrading tryptophan and regulating Treg
recruitment [49]. In this study, we hypothesized that IFN-TAMs in
ESCC may serve as an organism protector against tumors. Angio-
TAMs are generally enriched in the hypoxic region of the tumor
immune microenvironment with high expression of angiogenesis
markers [50]. Studies have reported that Angio-TAMS can promote
tumor progression, and their abundance is associated with poor
prognosis of patients, involving colorectal cancer, non-small cell
lung cancer, melanoma [51, 52]. There is a common or stacked
state of DEGs in these macrophage clusters, and there is a high
possibility of mutual transformation among them.
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It has been reported that CAFs can be used as a prognostic
factor for ESCC patients receiving neoadjuvant therapy [53].
IL6 secreted by CAFs promotes the expression of ESCC cell
receptor CXCR7 through the STAT3/NF-kB pathway, which is one
of the reasons for ESCC cells resistance to cisplatin [54]. Here, we
found that compared with the chemo_CA group, the proportion
of CAFs in the immuno_CA group was slightly lower, which may
be attributed to the inhibitory effect of Sintilimab on CAFs while
activating the immune system to fight against tumor cells.
Furthermore, the pseudo-time analysis presented that CAF2 not
only differentiated from CAF5, but also a small number of normal
fibroblasts could be transformed into CAF2. Genes with signifi-
cantly increased expression in the middle and end stages of
differentiation, such as MMP11, TNC and PLAT, may participate in
this malignant transformation process.

ST provides an unbiased picture of the spatial composition,
and many research teams have built valuable spatial profile
based on it [55, 56]. It can also enhance the understanding of
tumor substructure [57]. In this study, ST was used to analyze
four tissue samples to spatially demonstrate the results
obtained from the scRNA-seq analysis. It was found that the
farther away from the tumor in TME, the higher the expression
level of ENTPD1. ENTPD1 encodes CD39, which is an important
extracellular nucleotidase [58]. CD39 is not only highly
expressed in immune cells such as Treg, NK cells and
macrophages, but also in vascular endothelial cells and
fibroblasts, which may be one reason for its widespread
expression in ESCC [59]. Among the strongest interactions in
samples, we found that there were significant differences
between the chemo_CA group and the immuno_CA group. The
top three interactions in the former group were LAMP1-FAM3C,
JAM3-JAM3 and FZD6-WNT5A, and in the latter group were
EFNA1-EPHA2, EGFR-GRN, EFNA1-EPHA1. According to research
reports, LAMP1, FAM3C and FZD6 all have the ability to predict
the prognosis of ESCC, and WNT5A promotes ESCC metastasis
by activating the HDAC7/SNAIL signaling pathway [60, 61].
EEFNA1 encodes EPH protein and is involved in regulating
developmental events, while EPHA2 can interact with EPHA1 to
regulate the movement and proliferation of tumor cells [62].
EPHA2 has also been confirmed to dimerize with EGFR and
HER2, resulting in changes in downstream signals and
malignant transformation [30]. This suggests that EFNA1-
EPHA2-EPHA1, which strongly interact with each other in
immuno_CA group, may cause malignant progression of tumor
cells. Reducing their expression or blocking endogenous
activation of the regulatory axis of EFNA1-EPHA2-EPHA may
play a role in tumor inhibition [63]. EFNA1-EPHA2-EPHAT may
be an effective clinical therapeutic target or predictive
biomarker for ESCC, and we will further study it in the future.

MATERIALS AND METHODS

Clinical sample collection

Six patients admitted to the esophageal oncology department of Tianjin
Medical University Cancer Hospital, received neoadjuvant chemotherapy
or neoadjuvant immunotherapy combined with chemotherapy. The former
group was treated with nedaplatin or cisplatin combined with paclitaxel,
while the latter group was treated with nedaplatin combined with
paclitaxel and sindellizumab. These patients were newly treated and had
not previously undergone any other surgery or treatment. The tumors in
the gastroesophageal junction were excluded, and only the cancers in the
esophagus were retained. The pathological type was esophageal
squamous cell carcinoma (ESCC), excluding adenocarcinoma and other
tumor types. Histological grade was moderately or poorly differentiation.
The period of radical surgery was September 2021 until February 2022.
Informed consent papers were signed by patients or family members.
Tianjin Medical University Cancer Hospital's ethics committee gave its
approval for this study (E2020169). The pathology division of Tianjin
Medical University Cancer Hospital provided the tissue samples for IHC
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paraffin-embedded analysis. From December 2019 through June 2022,
individuals who underwent radical surgery could be followed up.

Quality control, dimensionality reduction, and cluster analysis
Cells were screened if they had 200-5000 genes and a UMI count of less than
30000, and cells with a mitochondrial content of more than 20% were
eliminated. A total of 88951 cells were left after low-quality cells were
eliminated for further examination. Seuratv3.1.2 was used for dimensionality
reduction and clustering, and NormalizeData and ScaleData were used to
normalize and scale all gene expression. The first 2000 variable genes are
chosen for principal components analysis (PCA) by FindVariableFeautres.
Cluster the cells using the first 20 major components from Findclusters. After
that, the UMAP method was used to display the cells in two dimensions.

Analysis of differentially expressed genes (DEGs)

The DEGs analysis was done on nine significant cell clusters. The Wilcox
likelihood ratio test for the default parameters served as the foundation for
the study, which was carried out with FindMarker in Seurat v3.1.2. DEGs
selection criteria: the mean Log(FC) was greater than 0.25 and the
percentage of cells expressing in clusters was greater than 10%. The heat
map/point map/violin map was then visually presented.

Cell cluster annotation

Each cell cluster was located using a combination of data from the
literature and manual annotation of the expression of canonical marker
genes discovered in DEGs. To display each cell clusters of the marker gene
expression, Seurat v3.1.2 DoHeatmap DotPlot/VInplot map was used.

Copy number variations (CNV) analysis

The InferCNV package was used to detect CNV in malignant cells. To examine
the intensity changes in gene expression at each place on the tumor genome,
immune cells were employed as the baseline reference. A gene’s sequence
was determined by where it was on each chromosome. Selection criteria for
genes: More than 20 cells were expressed. The residual normalized expression
values served as the reference point for the relative expression values, which
had a 1.5 standard deviation upper bound. Uphyloplot2 can be used to show
the final visualization, which uses the sliding window size of 101 genes to
smooth out the relative expression on each chromosome and eliminate any
potential impacts of gene-specific expression.

Evaluation of cell cycle effects

Since each stage of the cell cycle has important marker genes and is
regulated by cell cycle-related proteins, it is possible to score each cell’s
cycle gene set using CellCycleScoring in the Seurat package in order to
determine how the cell affects the cycle effect and then to visualize the
histogram/UMAP map.

Transcriptional regulatory network analysis of pySCENIC

The investigation of the transcriptional regulatory network was performed
using pySCENIC, and the analysis of the scRNA-seq data allowed for the
inference of the relevant transcription factors (TFs) and the gene regulatory
network. The probable TF-target regulatory relationship was identified
based on gene co-expression analysis, and cis-regulatory motif analysis
was carried out for each co-expression module to maintain direct targets
with the proper upstream regulators and significant enrichment. AUC
evaluated the regulatory factors’ target genes, determined the activity of
the regulators, categorized the cells based on their activity, and then
displayed the cells using heat maps/particular scatter plots.

Cell interaction analysis

Using CellphoneDB v2.1.0, cell cluster was used as the object of the
investigation of cell interactions. To assess the cell connection between the
two various cell types, the average amount of each receptor’s expression in
each cell cluster was computed based on the known ligands and their
receptors. By randomly rearranging the cell type label, calculating the
average expression of the interactions 1000 times, obtaining the
distribution, and comparing the average expression to the determined
average expression of the identified cell type, displacement tests were
used to determine the P-value of a pair of ligand-receptor (LR) interactions.
The criteria of significant cell interaction: P < 0.05. Finally, the visualization
was carried out through Cytoscape.
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Pseudo-time trajectory analysis

By sequencing cells in accordance with their progression and reconstruct-
ing their trajectory as they differentiate or go through a biological
transformation, pseudo-temporal trajectory analysis using Monocle2
demonstrated the differentiation or transformation process of cell clusters.
Seurat v3.1.2 FindVairableFeatures was used to choose the first 1000 highly
variable genes from cell clusters to reduce the dimensionality using
DDRTree. Plot_cell_trajectory was used to illustrate the trajectory visually.

RNA rate analysis

Using the BAM file including cell clusters and their reference genomes,
velocyto, and scVelo in Python, RNA rate analysis was carried out. The rate
of gene splicing was assessed by comparing the relative abundance of
newly formed unspliced mRNA with fully formed spliced mRNA. The rate
and direction of changes in the transcriptome during the dynamic process
should be revealed by consistent signals in the scRNA-seq data. The cluster
analysis performed by Seurat 3.1.2 was then projected to UMAP for visual
display.

Spatial cell type tag score

ssGSEA scoring algorithm was used to score subcell type characteristics to
explore the spatial distribution of subpopulations, and the scoring
algorithm was robust to ST data. Using the top 20 upregulated cell type-
specific genes (excluding mitochondrial and ribosomal genes) from the
scRNA-seq data, feature gene sets were generated. Finally, Seurat's
SpatialFeaturePlot was used to depict feature scores. Cell-cell interactions
in tissue sample space were studied using the spatial ligand-receptor
interaction stLearn v 0.4.7 to pick out important areas for LR interactions
from candidate LR in the Cell Phone EDB database. For further
examination, any LR with a score lower than 20 spots was excluded.
Benjamini-Hochberg corrected the P-value modification. Finally, the built-
in visual function of stLearn was used to implement the visual
presentation of LR.

Statistical analysis

Data analysis was done statistically using GraphPad Prism 8.0. The two
groups were analyzed using the T-test, such as chemo-group and immuno-
group, low group and high group, etc. Multiple groups were compared
using one-way ANOVA, such as chemo NC/CA group and immuno NC/CA
group, etc. The data were shown using mean +standard deviation
(M£SD), and correlation analysis was performed using the Spearman
method. The statistical significance of the difference between the data is
shown by P <0.05. *P < 0.05; **P < 0.01; ***P < 0.001.

DATA AVAILABILITY
The datasets generated during and analysed during the current study are available
from the corresponding author on reasonable request.
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